精英家教网 > 高中数学 > 题目详情
8.已知$\overrightarrow m=(sin(x-\frac{π}{3})\;,\;1)\;,\;\overrightarrow n=(cosx\;,\;1)$
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,求tanx值
(2)若函数f(x)=$\overrightarrow m•\overrightarrow n$,$x∈[{0\;,\;\frac{π}{2}}]$,求函数f(x)的最大值.

分析 (1)利用向量共线的条件建立方程,即可求tanx值;
(2)化简函数,结合三角函数的性质求函数f(x)的最大值.

解答 解:(1)∵$\overrightarrow{m}$∥$\overrightarrow{n}$,∴sin(x-$\frac{π}{3}$)=cosx,
展开化简可得tanx=2+$\sqrt{3}$;
(2)f(x)=$\overrightarrow m•\overrightarrow n$=sin(x-$\frac{π}{3}$)cosx+1=($\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx)cosx+1=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$+1,
∵0$≤x≤\frac{π}{2}$,
∴-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,
∴2x-$\frac{π}{3}$=$\frac{π}{2}$,即x-$\frac{5π}{12}$时,f(x)max=$\frac{6-\sqrt{3}}{4}$.

点评 本题考查向量共线的条件、三角函数的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数中至少有一个奇数的概率;
(2)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的外部或圆上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知m,n是两条不同直线,α、β、γ是三个不同平面.下列命题中正确的是(2).
(1)若α⊥γ,β⊥γ,则α∥β
(2)若m⊥α,n⊥α,则m∥n
(3)若m∥α,n∥α,则m∥n
(4)若m∥α,m∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{\begin{array}{l}|lgx|,0<x≤10\\-\frac{1}{2}x+6,x>10.\end{array}\right.$,若x1<x2<x3,且f(x1)=f(x2)=f(x3),则x1x2x3的取值范围是(  )
A.(1,10)B.(10,12)C.N1D.(20,24)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=1,${a_{n+1}}={a_n}+ln(1+\frac{1}{n})$,则an=(  )
A.1+nlnnB.1+(n-1)lnnC.1+lnnD.1+n+lnn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了解城市居民的健康状况,某调查机构从一社区的120名年轻人,80名中年人,60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了6名,则n=(  )
A.26B.24C.20D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某商场为了促销,举行了抽奖活动:在一个不透明的抽奖箱中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4
(1)顾客甲从抽奖箱中一次性随机取出两个球,求取出的球的编号之和不大于5的概率;
(2)顾客甲从抽奖箱中随机取一个球,记下编号后放回,再从抽奖箱中随机取一个球,记下编号放回,设这两次取出的球的编号之和为M,若M=8,则为一等奖,若M=7,则为二等奖,若M=6,则为三等奖,其他情况无奖,求顾客甲中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列关于x的不等式的解集:x2-3x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的可导函数f(x)满足f′(x)+f(x)<0,设a=f(m-m2),b=e${\;}^{{m}^{2}-m+1}$•f(1),则a,b的大小关系是(  )
A.a>bB.a<b
C.a=bD.a,b的大小与m的值有关

查看答案和解析>>

同步练习册答案