精英家教网 > 高中数学 > 题目详情
20.某商场为了促销,举行了抽奖活动:在一个不透明的抽奖箱中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4
(1)顾客甲从抽奖箱中一次性随机取出两个球,求取出的球的编号之和不大于5的概率;
(2)顾客甲从抽奖箱中随机取一个球,记下编号后放回,再从抽奖箱中随机取一个球,记下编号放回,设这两次取出的球的编号之和为M,若M=8,则为一等奖,若M=7,则为二等奖,若M=6,则为三等奖,其他情况无奖,求顾客甲中奖的概率.

分析 (1)从抽奖箱中一次性随机取出两个球,用列举法求出基本事件和从抽奖箱中一次性随机取出两个球的编号之和不大于5包含基本事件个数,由此能求出结果.
(2)列举出所有结果和顾客甲中奖包含的事件,由此能求出结果.

解答 解:(1)从抽奖箱中一次性随机取出两个球,其基本事件有:
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个                (2分)
设“从抽奖箱中一次性随机取出两个球的编号之和不大于5”为事件A,
则事件A包含的事件有(1,2),(1,3),(1,4),(2,3),共4个  (4分)
因此P(A)=$\frac{4}{6}=\frac{2}{3}$(6分)
(2)所有结果为(1,1),(1,2),(1,3),(1,4),(2,1),
(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),
(4,1),(4,2),(4,3),(4,4),共16个                         (8分)
设”顾客甲中奖“为事件B,则事件B包含的事件有:
(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),共6个                    (10分)
所以P(B)=$\frac{6}{16}=\frac{3}{8}$(12分)

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.(1+tan20°)(1+tan21°)(1+tan24°)(1+tan25°)的值是(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a,b,c是△ABC内角A,B,C所对的边,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求B;
(2)若b=2,△ABC的面积为$\sqrt{3}$,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow m=(sin(x-\frac{π}{3})\;,\;1)\;,\;\overrightarrow n=(cosx\;,\;1)$
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,求tanx值
(2)若函数f(x)=$\overrightarrow m•\overrightarrow n$,$x∈[{0\;,\;\frac{π}{2}}]$,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{5}}{2}$,过右焦点F的直线与两条渐近线分别交于点A、B且与其中一条渐近线垂直,若△OAB的面积为$\frac{8}{3}$,其中O为坐标原点,则双曲线的焦距为(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.2$\sqrt{10}$D.2$\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各组函数表示相同函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.古代中国数学辉煌灿烂,在《张丘建算经》中记载:“今有十等人,大官甲等十人官赐金,以等次差降之.上三人先入,得金四斤持出;下四人后入,得金三斤持出;中央三人未到者,亦依等次更给.问:各得金几何及未到三人复应得金几何?”则该问题中未到三人共得金多少斤?(  )
A.$\frac{37}{26}$B.$\frac{49}{24}$C.2D.$\frac{83}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某学校为了调查学生的学习情况,由每班随机抽取5名学生进行调查,若(1)班有50名学生,将每一学生编号从01到50止.请从随机数表的第3行第6列(下表为随机数表的前5行)开始,依次向右,直到取足样本,则抽取样本的号码是22,02,10,29,07.
03 47 4373 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 95
97 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 73
16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 10
12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76
55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$18\sqrt{3}$,则球O的体积为(  )
A.81πB.128πC.144πD.288π

查看答案和解析>>

同步练习册答案