| A. | 2 | B. | 4 | C. | 8 | D. | 16 |
分析 把所求的式子的中间两项结合,首末两项结合,前两项由21°+24°=45°,利用两角和的正切函数公式化简后,即可得到tan21°+tan20°与tan21°tan20°的关系式,利用多项式的乘法法则化简后,将求出的关系式代入即可求出前两项的乘积;后两项中的20°+25°=45°,同理可得后两项的乘积,把求得的两个积相乘即可得到所求式子的值,
解答 解:∵1=tan45°=tan(21°+24°)=$\frac{tan21°+tan24°}{1-tan21°tan24°}$,
∴1-tan21°tan24°=tan21°+tan24°,
即tan21°+tan24°+tan21°tan24°=1,
∴(1+tan21°)(1+tan24°)
=tan21°+tan24°+tan21°tan24°+1=2,
同理(1+tan20°)(1+tan25°)=2,
∴(1+tan21°)(1+tan20°)(1+tan25°)(1+tan24°)=2×2=4.
故选B.
点评 此题考查学生两个运用两角和的正切函数公式化简求值,是一道基础题.本题的突破点是由前两项和后两项的角加起来等于45°,所以把前两项结合后两项结合.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-8,-6] | B. | (-8,-6] | C. | (-∞,-8)∪(-6,+∞) | D. | (-∞,-6] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男生 | 女生 | 合计 | |
| 收看 | 10 | ||
| 不收看 | 8 | ||
| 合计 | 30 |
| P(x2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com