分析 正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积.
解答 解:由题意可知:$\frac{\sqrt{3}}{4}•3•$AA1=3$\sqrt{3}$,∴AA1=4
正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为:$\frac{\sqrt{3}}{3}$;
所以外接球的半径为:$\sqrt{\frac{1}{3}+4}$=$\sqrt{\frac{13}{3}}$.
所以外接球的表面积为:4π($\sqrt{\frac{13}{3}}$)2=$\frac{52π}{3}$.
故答案为:$\frac{52π}{3}$.
点评 本题是中档题,考查正三棱柱的外接球的表面积的求法,找出球的球心是解题的关键,考查空间想象能力,计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{16}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x2 | ||
| C. | f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(t)=|t| | D. | f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com