精英家教网 > 高中数学 > 题目详情
3.如果函数y=x2+(1-a)x+2在区间(-∞,4]上是减函数,那么实数a的取值范围是a≥9.

分析 判断函数的开口方向,求出对称轴,列出不等式求解即可.

解答 解:函数y=x2+(1-a)x+2的开口向上,对称轴为:x=$\frac{a-1}{2}$,
函数在区间(-∞,4]上是减函数,
可得$\frac{a-1}{2}$≤4,
解得a≤9.
故答案为:a≤9.

点评 本题考查二次函数的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则曲线f(x)在(0,f(0))处在的切线方程为6$\sqrt{3}$x+2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式-x2+3x-2≥0的解集是{x|1≤x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{x-3,x≥6}\\{f(f(x+5)),x<6}\end{array}\right.$,则f(5)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数中至少有一个奇数的概率;
(2)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的外部或圆上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,则z=(x-1)2+y2的最大值是(  )
A.1B.9C.2D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知体积为3$\sqrt{3}$的正三棱柱ABC-A1B1C1各顶点都在同一球面上,若AB=$\sqrt{3}$,则此球的表面积等于$\frac{52π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$x∈({\frac{π}{4},\frac{π}{2}}),sin({\frac{π}{4}-x})=-\frac{3}{5}$,则cos2x=$-\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了解城市居民的健康状况,某调查机构从一社区的120名年轻人,80名中年人,60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了6名,则n=(  )
A.26B.24C.20D.18

查看答案和解析>>

同步练习册答案