分析 取AB中点D,则$\overrightarrow{OA}+\overrightarrow{OB}$=2$\overrightarrow{OD}$=-2$\overrightarrow{OC}$,于是O是CD的中点,故而△AOC的面积为△ABC的$\frac{1}{4}$.
解答
解:取AB中点D,则$\overrightarrow{OA}+\overrightarrow{OB}$=2$\overrightarrow{OD}$,∵$\overrightarrow{OA}$+$\overrightarrow{OB}$=-2$\overrightarrow{OC}$,∴O是CD的中点,
∵S△ABC=4,∴S△ACD=$\frac{1}{2}$S△ABC=2,S△AOD=$\frac{1}{2}$S△ACD=1,
∴S△AOC=S△ACD-S△AOD=1.
故答案为1.
点评 本题考查了平面向量的线性运算及几何意义,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$ | |
| B. | 若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则存在惟一实数λ,使$\overrightarrow{a}$=$λ\overrightarrow{b}$ | |
| C. | 若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$ | |
| D. | 若|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$共线 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,3] | B. | [-2,0) | C. | [-2,0)∪[3,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{{x}^{2}-2|x|+1}$ | B. | x2+1-2|x| | C. | |x2-1| | D. | $\sqrt{{x}^{2}-2x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com