精英家教网 > 高中数学 > 题目详情
8.已知点P(3,4),Q(2,6),向量$\overrightarrow{EF}$=(-1,λ),若$\overrightarrow{PQ}$•$\overrightarrow{EF}$=0,则实数λ的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

分析 根据向量的坐标运算以及向量的数量积即可求出.

解答 解:∵P(3,4),Q(2,6),
∴$\overrightarrow{PQ}$=(-1,2),
∵向量$\overrightarrow{EF}$=(-1,λ),$\overrightarrow{PQ}$•$\overrightarrow{EF}$=0,
∴-1×(-1)+2λ=0,
∴λ=-$\frac{1}{2}$,
故选:B.

点评 本题考查了向量的坐标运算和向量数量积的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C的参数方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ是参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程是$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)设曲线C和直线l相交于点M,N,试求出过M,N两点的圆中面积最小的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设抛物线x2=4y的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的倾斜角等于30°,那么|$\overrightarrow{PF}$|等于(  )
A.2$\sqrt{3}$B.4C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{\frac{1}{x^2},x<0}\end{array}\right.$,则f(f(-10))等于(  )
A.$\frac{1}{10}$B.10C.-$\frac{1}{10}$D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.双曲线C的中心在坐标原点,顶点为A(0,$\sqrt{2}$),A点关于一条渐近线的对称点是B($\sqrt{2}$,0),斜率为2且过点B的直线l交双曲线C于M,N两点,求:
(1)双曲线的方程;
(2)|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布表如下
(1)求频率分布表中x的值;
(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有5名上学路上时间小于40分钟的新生,其中3人上学路上时间不小于20分钟,则从这5人中任选2人,设这2人中上学路上时间小于20分钟人数为X,求X的分布列和数学期望.
分组频率
[0,20)0.25
[20,40)x
[40,60)0.13
[60,80)0.06
[80,100)0.06

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,角A、B、C的对边分别为a、b、c.已知a2+c2-ac=b2
(1)求角B;
(2)当b=6,sinC=2sinA时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点,P是C上任一点,PF1交y轴于Q点,若P、Q、O、F2四点共圆且$\frac{P{F}_{1}}{P{F}_{2}}$+$\frac{P{F}_{2}}{P{F}_{1}}$=$\frac{8}{3}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线l?平面α,直线m?平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案