分析 (1)由余弦定理变形已知式子可得cosB,结合三角形内角的范围可得;
(2)由题意正弦定理可得c=2a,代入a2+c2-ac=b2可解得$a=2\sqrt{3}$,$c=4\sqrt{3}$,可得△ABC为直角三角形,由三角形的面积公式可得.
解答 解:(1)∵△ABC中a2+c2-ac=b2,∴ac=a2+c2-b2,
∴由余弦定理可得$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{ac}{2ac}=\frac{1}{2}$,
∵B为三角形的内角,∴$B=\frac{π}{3}$;
(2)∵sinC=2sinA,∴由正弦定理可得c=2a,
代入a2+c2-ac=b2得36=a2+4a2-2a2,
解得$a=2\sqrt{3}$,$c=4\sqrt{3}$,
满足a2+b2=c2,∴△ABC为直角三角形,
∴${S_{△ABC}}=\frac{1}{2}•2\sqrt{3}•6=6\sqrt{3}$
点评 本题考查正余弦定理解三角形,涉及三角形的面积公式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x甲<x乙,乙比甲成绩稳定 | B. | x甲>x乙;甲比乙成绩稳定 | ||
| C. | x甲>x乙;乙比甲成绩稳定 | D. | x甲<x乙;甲比乙成绩稳定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ab<ba<logab | B. | ba<logab<ab | C. | logab<ba<ab | D. | logab<ab<ba |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com