精英家教网 > 高中数学 > 题目详情
5.在正方体ABCD-A1B1C1D1中,直线DC1与平面A1BD所成角的余弦值是(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线DC1与平面A1BD所成角的余弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为1,
则D(0,0,0),C1(0,1,1),A1(1,0,1),B(1,1,0),
$\overrightarrow{D{C}_{1}}$=(0,1,1),$\overrightarrow{D{A}_{1}}$=(1,0,1),$\overrightarrow{DB}$=(1,1,0),
设平面A1BD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{DB}=x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,-1),
设直线DC1与平面A1BD所成角为θ,
则sinθ=$\frac{|\overrightarrow{D{C}_{1}}•\overrightarrow{n}|}{|\overrightarrow{D{C}_{1}}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{2}•\sqrt{3}}$=$\frac{\sqrt{2}}{\sqrt{3}}$,
∴cosθ=$\sqrt{1-(\frac{\sqrt{2}}{\sqrt{3}})^{2}}$=$\frac{\sqrt{3}}{3}$.
∴直线DC1与平面A1BD所成角的余弦值为$\frac{\sqrt{3}}{3}$.
故选:C.

点评 本题考查直线与平面所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}x+2,x≤0\\ 1gx,x>0\end{array}\right.$,则函数y=|f(x)|-1的零点个数是(  )
A.1B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x>0}\\{\frac{1}{x^2},x<0}\end{array}\right.$,则f(f(-10))等于(  )
A.$\frac{1}{10}$B.10C.-$\frac{1}{10}$D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布表如下
(1)求频率分布表中x的值;
(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有5名上学路上时间小于40分钟的新生,其中3人上学路上时间不小于20分钟,则从这5人中任选2人,设这2人中上学路上时间小于20分钟人数为X,求X的分布列和数学期望.
分组频率
[0,20)0.25
[20,40)x
[40,60)0.13
[60,80)0.06
[80,100)0.06

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,角A、B、C的对边分别为a、b、c.已知a2+c2-ac=b2
(1)求角B;
(2)当b=6,sinC=2sinA时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“a=-5”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点,P是C上任一点,PF1交y轴于Q点,若P、Q、O、F2四点共圆且$\frac{P{F}_{1}}{P{F}_{2}}$+$\frac{P{F}_{2}}{P{F}_{1}}$=$\frac{8}{3}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知α是第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)tan(-α+\frac{3}{2}π)}{sin(-α-π)}$.
(1)若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α);
(2)若α=-1920°,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正四面体的棱长为4$\sqrt{6}$,顶点都在同一球面上,则该球的表面积为(  )
A.36πB.72πC.144πD.288π

查看答案和解析>>

同步练习册答案