精英家教网 > 高中数学 > 题目详情
7.等差数列{an}的前三项分别为x-2,x,3x+2,则它的通项公式an等于(  )
A.2n-4B.2nC.2n+2D.2n+1

分析 根据等差数列的性质可知:d等于第二项减去第一项,且第二项的2倍等于第一项与第三项的和,可求出公差d及x的值,进而求出首项的值,由首项和公差写出等差数列的通项公式即可.

解答 解:∵x-2,x,3x+2,成等差数列,
∴公差d=x-(x-2)=2,
且2x=x-2+3x+2,解得:x=0,
∴等差数列的首项为0-2=-2,
则此等差数列的通项公式an=-2+2(n-1)=2n-4.
故选:A.

点评 此题考查了等差数列的性质,以及等差数列的通项公式,灵活运用等差数列的性质确定出数列的首项和公差是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$
(1)当x∈[-1,5]时,求函数f(x)的值域;
(2)解不等式f(x+1)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求经过点A(2,-3),B(-2,-5),C(0,1)的圆的方程;
(2)求圆心在直线x-2y-3=0上,且经过点A(2,-3),B(-2,-5)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,且$\overrightarrow{m}=2\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{n}=\overrightarrow{a}-4\overrightarrow{b}$,求向量$\overrightarrow{m}$与$\overrightarrow{n}$的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若θ在第四象限,则sin(cosθ)•cos(sinθ)的值为(  )
A.正值B.负值C.D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一次函数f(x)的图象不过第四象限,且f(f(x))=4x+3,则f(x)的表达式为(  )
A.2x+1B.-2x-3C.-2x+1D.2x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=4cosxsin({x+\frac{π}{6}})-1$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间$[{-\frac{π}{6},\frac{π}{4}}]$上函数值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设i为虚数单位,则$\frac{3{(1+i)}^{2}}{i-1}$=3-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.若ab≠0,则$\frac{b}{a}+\frac{a}{b}$≥2B.若a<0,则a+$\frac{4}{a}$≥-4
C.若a>0,b>0,则lga+lgb≥2$\sqrt{lga•lgb}$D.若x≠kπ,k∈Z,则sin2x+$\frac{4}{{{{sin}^2}x}}$≥5

查看答案和解析>>

同步练习册答案