精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$
(1)当x∈[-1,5]时,求函数f(x)的值域;
(2)解不等式f(x+1)>3.

分析 (1)当-1≤x≤2时,配方法得-1≤(x-1)2-1≤3;当2<x≤5时,0<log2(x-1)≤2,从而求值域;
(2)当x+1≤2,即x≤1时,(x+1)2-2(x+1)>3,当x+1>2,即x>1时,log2(x+1-1)>3,从而解得.

解答 解:(1)当-1≤x≤2时,
f(x)=x2-2x=(x-1)2-1,
∴-1≤(x-1)2-1≤3;
当2<x≤5时,f(x)=log2(x-1),
∴0<log2(x-1)≤2,
故函数f(x)的值域为[-1,3];
(2)当x+1≤2,即x≤1时,
(x+1)2-2(x+1)>3,
即(x+2)(x-2)>0,
解得,x<-2;
当x+1>2,即x>1时,
log2(x+1-1)>3,
解得,x>8;
故解集为(-∞,-2)∪(8,+∞).

点评 本题考查了分段函数的应用及分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在实数集上的函数,且f(x+2)=$\frac{1+f(x)}{1-f(x)}$,f(1)=$\frac{1}{4}$,则f(2015)=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设m个正数a1,a2,…,am(m≥4,m∈N*)依次围成一个圆圈.其中a1,a2,a3,…,ak-1,ak(k<m,k∈N*)是公差为d的等差数列,而a1,am,am-1,…,ak+1,ak是公比为q的等比数列.
(1)若a1=d=1,q=2,k=8,求数列a1,a2,…,am的所有项的和Sm
(2)若a1=d=q=3,m<2015,求m的最大值;
(3)当q=2时是否存在正整数k,满足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=($\frac{1}{3}$)${\;}^{-2{x}^{2}-8x+1}$(-3≤x≤1)的单调区间与值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.用分析法证明:已知a,b∈R且a≠b,则$|\frac{1}{{a}^{2}+1}-\frac{1}{{b}^{2}+1}|<|a-b|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{x+1}$(x∈(2,3]).
(1)求证:函数是减函数;
(2)求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市出租车的收费标准为:乘坐距离3公里以内(含3公里)按起点价10元收费.超过3公里,超出里程每公里按1.5元加收,如果超过15公里,则超出里程按每公里2.1元收费,写出收费y(元)与里程x(公里)的函数关系式,并作出函数图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-k$\overrightarrow{{e}_{2}}$,且A,C,D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.等差数列{an}的前三项分别为x-2,x,3x+2,则它的通项公式an等于(  )
A.2n-4B.2nC.2n+2D.2n+1

查看答案和解析>>

同步练习册答案