精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{1}{x+1}$(x∈(2,3]).
(1)求证:函数是减函数;
(2)求函数的最值.

分析 (1)运用单调性的定义证明,注意作差、变形和定符号、下结论几个步骤;
(2)运用函数f(x)为(2,3]上的减函数,即可得到所求最值.

解答 解:(1)证明:设2<m<n≤3,即有f(m)-f(n)=$\frac{1}{1+m}$-$\frac{1}{1+n}$
=$\frac{n-m}{(1+m)(1+n)}$,
由2<m<n≤3,可得n-m>0,(1+m)(1+n)>0,
则f(m)>f(n),则函数f(x)为(2,3]上的减函数;
(2)由函数f(x)为(2,3]上的减函数,
可得f(3)为最小值,且为$\frac{1}{4}$,无最大值.

点评 本题考查函数的带动下的证明,注意运用定义法,考查函数的最值的求法,运用函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.△ABC外接圆半径为$\sqrt{3}$,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为$\sqrt{6}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆x2+y2=4,过点P(0,1)的直线l交该圆于A,B两点,O为坐标原点,则△OAB面积的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,左,右焦点分别为F1,F2上顶点为B,延长BF2交椭圆C于点A,且△ABF1的周长为8.
(1)求椭圆C的方程;
(2)设M、N分别为椭圆C的左、右顶点,P为直线l:x=4上的一动点(点P不在x轴上),连接MP交椭圆C于点Q,连接PN并延长交椭圆C于点R,则直线QR是否经过一定点?若经过,求出该定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$
(1)当x∈[-1,5]时,求函数f(x)的值域;
(2)解不等式f(x+1)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四陵锥P-ABCD中,AB∥CD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:
(1)PA⊥底面ABCD;
(2)平面BEF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知O为直角坐标系的原点,以Ox为始边作角α与β(0<β<α<$\frac{3π}{2}$),α与β的终边分别与单位圆相交于P、Q两点.已知P点的坐标为(-$\frac{3}{5}$,-$\frac{4}{5}$).
(1)先化简:$\frac{sinα}{1-\frac{1}{tanα}}$+$\frac{cosα}{1-tanα}$再求其值;
2)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,求$\frac{1}{2sinβcosβ+co{s}^{2}β}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{π}{2}$≤β<α<$\frac{3π}{4}$,sin(α+β)=-$\frac{3}{5}$,cos(α-β)=$\frac{12}{13}$,则cos2β的值为(  )
A.-$\frac{63}{65}$B.$\frac{63}{65}$C.$\frac{33}{65}$D.-$\frac{33}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一次函数f(x)的图象不过第四象限,且f(f(x))=4x+3,则f(x)的表达式为(  )
A.2x+1B.-2x-3C.-2x+1D.2x+3

查看答案和解析>>

同步练习册答案