精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x,g(x)=-x2+2x+b(b∈R),记h(x)=f(x)-
1f(x)

(Ⅰ)判断h(x)的奇偶性,并证明;
(Ⅱ)对任意x∈[1,2],都存在x1,x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2).若f(x1)=g(x2),求实数b的值;
(Ⅲ)若2xh(2x)+mh(x)≥0对于一切x∈[1,2]恒成立,求实数m的取值范围.
分析:(I)判断知,此函数h(x)=2x-
1
2x
 是一个奇函数,由奇函数的定义进行证明即可;
(II)据题意知,当x∈[1,2]时,f(x)max=f(x1),g(x)max=g(x2),然后根据函数的单调性求出f(x1)与g(x2),建立等式,解之即可;
(III)将m分离,然后根据函数的单调性求出另一侧函数在闭区间上的最值,即可求出m的取值范围.
解答:(本小题满分14分)
解:(Ⅰ)函数h(x)=2x-
1
2x
为奇函数…(2分)
现证明如下:
∵函数h(x)的定义域为R,关于原点对称.…(3分)
h(-x)=2-x-
1
2-x
=
1
2x
-2x=-(2x-
1
2x
)=-h(x)
…(5分)
∴函数h(x)=2x-
1
2x
为奇函数…(6分)
(Ⅱ)据题意知,当x∈[1,2]时,f(x)max=f(x1),g(x)max=g(x2)…(7分)
∵f(x)=2x在区间[1,2]上单调递增,
f(x)max=f(2)=22=4,即f(x1)=4…(8分)
又∵g(x)=-x2+2x+b=-(x-1)2+b+1
∴函数y=g(x)的对称轴为x=1
∴函数y=g(x)在区间[1,2]上单调递减
∴g(x)max=g(1)=1+b,即g(x2)=1+b…(9分)
由f(x1)=g(x2),
得1+b=4,∴b=3…(10分)
(Ⅲ)当x∈[1,2]时,2x(22x-
1
22x
)+m(2x-
1
2x
)≥0

即m(22x-1)≥-(24x-1),
∵22x-1>0,∴m≥-(22x+1)…(12分)
令k(x)=-(22x+1),x∈[1,2]
下面求函数k(x)的最大值.
∵x∈[1,2],∴-(22x+1)∈[-17,-5],
∴k(x)max=-5…(13分)
故m的取值范围是[-5,+∞)…(14分)
点评:本题主要考查了函数奇偶性的判定,以及恒成立问题的处理,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案