精英家教网 > 高中数学 > 题目详情
设函数y=ax3+bx2+cx+d的图象与y轴交点为P点,且曲线在P点处的切线方程为12x-y-4=0,若函数在x=2处取得极值0,试确定函数的解析式.
分析:函数y=ax3+bx2+cx+d的图象与y轴交点为P点得到P的坐标,代入到切线方程中求出P的坐标又因为切线方程为12x-y-4=0的斜率为12,导数y′|x=0=12,求出y′,代入求出c,又根据函数在x=2处取得极值0,得到y′|x=2=0,f(2)=0,求出a、b得到函数解析式.
解答:解:∵y=ax3+bx2+cx+d的图象与y轴的交点为P,
∴P的坐标为P(0,d).又曲线在点P处的切线方程为y=12x-4,
P点坐标适合方程,从而d=-4.
又切线斜率k=12,故在x=0处的导数y′|x=0=12,
而y′=3ax2+2bx+c,y′|x=0=c,从而c=12.
又函数在x=2处取得极值0,所以
y′ x=2=0
f(2)=0
,即
12a+4b+12=0
8a+4b+20=0

解得a=2,b=-9.
∴所求函数解析式为y=2x3-9x2+12x-4.
点评:考查学生会利用待定系数法求函数解析式,会求函数的导函数并会根据导数表示直线的斜率.理解极值的意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=ax3+bx2+cx+d(a≠0)的导函数为y=3ax2+2bx+c,不妨把方程y=3ax2+2bx+c=0称为导方程,其判别式△=4(b2-3ac),若△>0,设其两根为x1,x2,则当a<0,△≤0时,三次函数的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx+d在(-∞,1)上单调递减,在(1,3)上单调递增在(3,+∞)上单调递减,且函数图象在(2,f(2))处的切线与直线5x+y=0垂直.
(Ⅰ)求实数a、b、c的值;
(Ⅱ)设函数f(x)=0有三个不相等的实数根,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx+c在x=1处取得极值c-4.
(1)求a,b;
(2)设函数y=f(x)为R上的奇函数,求函数f(x)在区间(-2,0)上的极值.

查看答案和解析>>

科目:高中数学 来源:江苏省南通市海门市2008届高三第一次诊断性考试数学(理) 题型:013

设函数y=f(x)=ax3+bx2+cx+d的图像与y轴的交点为P点,曲线在点P处的切线方程为12x-y-4=0.若函数在x=2处取得极值0,则函数的单调减区间为

[  ]

A.(1,2)

B.(-∞,1)

C.(2,+∞)

D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数y=f(x)=ax3+bx2+cx+d的图像与y轴的交点为P点,曲线在点P处的切线方程为12x-y-4=0.若函数在x=2处取得极值0,则函数的单调减区间为


  1. A.
    (1,2)
  2. B.
    (-∞,1)
  3. C.
    (2,+∞)
  4. D.
    (-2,-1)

查看答案和解析>>

同步练习册答案