Èçͼ£¬ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬½¹µãΪF1¡¢F2£¬Ë«ÇúÏßG£ºx2-y2=m£¨m£¾0£©µÄ¶¥µãÊǸÃÍÖÔ²µÄ½¹µã£¬ÉèPÊÇË«ÇúÏßGÉÏÒìÓÚ¶¥µãµÄÈÎÒ»µã£¬Ö±ÏßPF1¡¢PF2ÓëÍÖÔ²µÄ½»µã·Ö±ðΪA¡¢BºÍC¡¢D£¬ÒÑÖªÈý½ÇÐÎABF2µÄÖܳ¤µÈÓÚ8
2
£¬ÍÖÔ²Ëĸö¶¥µã×é³ÉµÄÁâÐεÄÃæ»ýΪ8
2
£®
£¨1£©ÇóÍÖÔ²EÓëË«ÇúÏßGµÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßPF1¡¢PF2µÄбÂÊ·Ö±ðΪk1ºÍk2£¬Ì½Çók1ºÍk2µÄ¹Øϵ£»
£¨3£©ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ|AB|+|CD|=¦Ë|AB|•|CD|ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¾«Ó¢¼Ò½ÌÍø
·ÖÎö£º£¨1£©¸ù¾ÝÈý½ÇÐÎABF2µÄÖܳ¤µÈÓÚ8
2
£¬ÍÖÔ²Ëĸö¶¥µã×é³ÉµÄÁâÐεÄÃæ»ýΪ8
2
¿ÉÇó³öa£¬bµÄÖµ£¬ÔÙÀûÓÃË«ÇúÏßG£ºx2-y2=m£¨m£¾0£©µÄ¶¥µãÊǸÃÍÖÔ²µÄ½¹µã½ø¶ø¿ÉÇó³ömµÄÖµ£®
£¨2£©¿ÉÀûÓÃбÂʹ«Ê½k=
y2-y1
x2-x1
±íʾ³ök1£¬k2ÔÙ̽Çók1ºÍk2µÄ¹Øϵ£¬¹ØϵÎ޷ǾÍÊǺͣ¬²î£¬»ý£¬ÉÌ£®
£¨3£©Ç£Éæµ½|AB|£¬|CD|£¬|AB|£¬|CD|ÐèÓõ½ÏÒ³¤¹«Ê½£¬Òò¶øÐèÒªÁªÁ¢·½³Ì£¬¹ÊÐèÒª°ÑÖ±ÏßABµÄ·½³ÌÉè³öÀ´ÁªÁ¢·½³Ì´úÈë¼ÆËã¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâÖª£¬ÍÖÔ²ÖÐ4a=8
2
£¬a=2
2
£¬2ab=8
2
£¬b=2

ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ
x2
8
+
y2
4
=1

ÓÖ¶¥µãÓë½¹µãÖغϣ¬ËùÒÔm=c2=a2-b2=4£»
ËùÒÔ¸ÃË«ÇúÏߵıê×¼·½³ÌΪ
x2
4
-
y2
4
=1
£®
£¨2£©ÉèµãP£¨x£¬y£©£¬x¡Ù¡À2k1=
y
x+2
£¬k2=
y
x-2
k1k2=
y2
x2-4

PÔÚË«ÇúÏßÉÏ£¬ËùÒÔ
x2
4
-
y2
4
=1
y2=x2-4ËùÒÔk1•k2=1
£¨3£©ÉèÖ±ÏßAB£ºy=k1£¨x+2£©k1¡Ù0
ÓÉ·½³Ì×é
y=k1(x+2)
x2
8
+
y2
4
=1
µÃ£¨2k12+1£©x2+8k12x+8k12-8=0
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
ËùÒÔx1+x2=
-8k12
2k12+1
£¬x1x2=
8k12-8
2k12+1

ÓÉÏÒ³¤¹«Ê½|AB|=
1+k12
(x1+x2)2-4x1x2
=
4
2
(1+k12)
2k12+1

ͬÀí|CD|=
1+k22
(x1+x2)2-4x1x2
=
4
2
(1+k22)
2k22+1

ÓÉk1k2=1£¬k2=
1
k1
´úÈëµÃ|CD|=
4
2
(1+k12)
k12+2
|AB|+|CD|=¦Ë|AB|CD|£¬¦Ë=
1
|AB|
+
1
|CD|
=
3
2
8

ËùÒÔ´æÔÚ¦Ë=
3
2
8
ʹµÃ|AB|+|CD|=¦Ë|AB|CD|³ÉÁ¢£®
µãÆÀ£º´ËÌâµÚÒ»Îʽϼòµ¥Êô»ù´¡£¬µÚ¶þÎʽϸ´ÔÓ£¬Ò»°ãÇé¿öϵĹØϵÎ޷ǾÍÊǺͣ¬²î£¬»ý£¬ÉÌ£¬¹Ø¼üÊÇPÔÚË«ÇúÏßÉÏ£¬ËùÒÔ
x2
4
-
y2
4
=1
y2=x2-4È»ºó´úÈë¼ÆË㣮µÚÈýÎÊÊÇƽ³£½Ï³£¼ûµÄÀàÐÍ£¬Ö÷ÒªÊǼÆËã·±Ëö£¬Ö»Òª¼ÆËã²»³ö´í¶¼¿ÉÒԴﵽĿµÄ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
3
2
£¬EµÄ×󶥵ãΪA¡¢É϶¥µãΪB£¬µãPÔÚÍÖÔ²ÉÏ£¬ÇÒ¡÷PF1F2µÄÖܳ¤Îª4+2
3
£®
¾«Ó¢¼Ò½ÌÍø
£¨I£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨II£©ÉèC£¬DÊÇÍÖÔ²EÉÏÁ½²»Í¬µã£¬CD¡ÎAB£¬Ö±ÏßCDÓëxÖá¡¢yÖá·Ö±ð½»ÓÚM£¬NÁ½µã£¬ÇÒ
MC
=¦Ë
CN
£¬
MD
=¦Ì
DN
£¬Çó¦Ë+¦Ì
µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Äþ²¨¶þÄ££©Èçͼ£¬ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1 (a£¾b£¾0)
µÄÀëÐÄÂÊÊÇ
2
2
£¬P1¡¢P2ÊÇÍÖÔ²EµÄ³¤ÖáµÄÁ½¸ö¶Ëµã£¨P2λÓÚP1ÓҲࣩ£¬µãFÊÇÍÖÔ²EµÄÓÒ½¹µã£®µãQÊÇxÖáÉÏλÓÚP2ÓÒ²àµÄÒ»µã£¬ÇÒÂú×ã
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2
£®
£¨¢ñ£© ÇóÍÖÔ²EµÄ·½³ÌÒÔ¼°µãQµÄ×ø±ê£»
£¨¢ò£© ¹ýµãQµÄ¶¯Ö±Ïßl½»ÍÖÔ²EÓÚA¡¢BÁ½µã£¬Á¬½áAF²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãC£¬Á¬½áBF²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãD£®
¢ÙÇóÖ¤£ºB¡¢C¹ØÓÚxÖá¶Ô³Æ£»
¢Úµ±ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013-2014ѧÄê°²»ÕÊ¡ËÞÖÝÊиßÈýÉÏѧÆÚÆÚÄ©¿¼ÊÔÀí¿ÆÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªÍÖÔ²EµÄÖÐÐÄÊÇÔ­µãO£¬ÆäÓÒ½¹µãΪF(2£¬0)£¬¹ýxÖáÉÏÒ»µãA(3,0)×÷Ö±ÏßÓëÍÖÔ²EÏཻÓÚP,QÁ½µã,ÇÒµÄ×î´óֵΪ.

(¢ñ)ÇóÍÖÔ²EµÄ·½³Ì;

(¢ò)Éè,¹ýµãPÇÒƽÐÐÓÚyÖáµÄÖ±ÏßÓëÍÖÔ²EÏཻÓÚÁíÒ»µãM,ÊÔÎÊM,F,QÊÇ·ñ¹²Ïߣ¬Èô¹²ÏßÇëÖ¤Ã÷£»·´Ö®ËµÃ÷ÀíÓÉ.

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013½ì¼ªÁÖÊ¡¸ß¶þÆÚÖп¼ÊÔÎÄ¿ÆÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªÍÖÔ²E¾­¹ýµãA£¨2,3£©£¬¶Ô³ÆÖáΪ×ø±êÖᣬ½¹µã¡¢ÔÚxÖáÉÏ£¬ÀëÐÄÂÊ

£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»

£¨2£©ÇóµÄ½Çƽ·ÖÏßËùÔÚÖ±Ïߵķ½³Ì.

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013ÄêÕã½­Ê¡Äþ²¨Êи߿¼Êýѧ¶þÄ£ÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªÍÖÔ²E£ºµÄÀëÐÄÂÊÊÇ£¬P1¡¢P2ÊÇÍÖÔ²EµÄ³¤ÖáµÄÁ½¸ö¶Ëµã£¨P2λÓÚP1ÓҲࣩ£¬µãFÊÇÍÖÔ²EµÄÓÒ½¹µã£®µãQÊÇxÖáÉÏλÓÚP2ÓÒ²àµÄÒ»µã£¬ÇÒÂú×㣮
£¨¢ñ£© ÇóÍÖÔ²EµÄ·½³ÌÒÔ¼°µãQµÄ×ø±ê£»
£¨¢ò£© ¹ýµãQµÄ¶¯Ö±Ïßl½»ÍÖÔ²EÓÚA¡¢BÁ½µã£¬Á¬½áAF²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãC£¬Á¬½áBF²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãD£®
¢ÙÇóÖ¤£ºB¡¢C¹ØÓÚxÖá¶Ô³Æ£»
¢Úµ±ËıßÐÎABCDµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸