精英家教网 > 高中数学 > 题目详情
设复数z满足|z|=1,且(3+4i)•z是纯虚数,求复数z和
.
z
考点:复数代数形式的混合运算
专题:数系的扩充和复数
分析:设z=a+bi,(a,b∈R),由|z|=1得
a2+b2
=1
. (3+4i)•z=3a-4b+(4a+3b)i是纯虚数,则3a-4b=0,再由
a2+b2=1
3a-4b=0
,求得ab的值,可得复数z和
.
z
解答: 解:设z=a+bi,(a,b∈R),由|z|=1得
a2+b2
=1

∵(3+4i)•z=(3+4i)(a+bi)=3a-4b+(4a+3b)i是纯虚数,则3a-4b=0,
再由
a2+b2
=1
3a-4b=0
a=
4
5
b=
3
5
,或
a=-
4
5
b=-
3
5

∴z=
4
5
+
3
5
i,
.
z
=
4
5
-
3
5
i,或者
.
z
=
4
5
+
3
5
i,z=
4
5
-
3
5
i.
点评:本题主要考查复数的基本概念,两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l1:ax-y+b=0,l2:bx-y+a=0(a、b≠0,a≠b)在同一坐标系中的图形大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1-a
a-x
(a∈R且x≠a).
(1)证明:对定义域内所有x,f(x)+2+f(2a-x)恒为定值;
(2)设函数g(x)=x2+|(x-a)f(x)|,求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在△ABC中,已知∠A=
π
3
,BC=4
3
,D为AB上一点.
(Ⅰ)若CD=2,S△BDC=2
3
,求BD长;
(Ⅱ)若AC=AD,求△BCD周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若斜率为k的两条平行直线l,m与曲线C相切并至少有两个切点,且曲线C上的所有点都在l,m之间(也可在直线l,m上),则把l,m称为曲线C的“夹线”,把l,m间的距离称为曲线C在“k方向上的宽度”,记为d(k).已知函数f(x)=x+3cosx.
(Ⅰ)若点P横坐标为0,求f(x)图象在点P处的切线方程;
(Ⅱ)试判断y=x+3和y=x-3是否是f(x)的“夹线”,若是,求d(1);若不是,请说明理由;
(Ⅲ)求证:函数F(x)=-
1
3
x3+x的图象不存在“夹线”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.
(1)试将S表示成的函数S(k),并求出它的定义域;
(2)求S的最大值,并求取得最大值时k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在直三棱柱ABC-A1B1C1中,AC=BC=C1C,AC⊥CB,D为AB的中点,
(1)求证:AC1∥平面CDB1
(2)求二面角B-B1C-D的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是某市从3月份中随机抽取的10天空气质量指数(AQI)和“PM2.5”(直径小于等于2.5微米的颗粒物)24小时平均浓度的数据,空气质量指数(AQI)小于100表示空气质量优良.
日期编号 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
空气质量指数(AQI) 179 40 98 124 29 133 241 424 95 89
“PM2.5”24小时平均浓度(ug/m3 135 5 80 94 80 100 190 387 70 66
(1)根据上表数据,估计该市当月某日空气质量优良的概率;
(2)在上表数据中,在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件M为“抽取的两个日期中,当天“PM2.5”的24小时平均浓度不超过75ug/m3”,求事件M发生的概率;
(3)在上表数据中,在表示空气质量优良的日期中,随机抽取3天,记ξ为“PM2.5”24小时平均浓度不超过75ug/m3的天数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其侧(左)视图是一个等边三角形,则这个几何体的体积是
 

查看答案和解析>>

同步练习册答案