精英家教网 > 高中数学 > 题目详情
11.如图,P是正方体ABCD-A′B′C′D′的面ABCD上任意一点,试在面ABCD内过点P作直线l,使l⊥PC′.

分析 连接PC,在面ABCD内过点P作直线l,使l⊥PC,利用线面垂直的判定与性质,即可得出结论.

解答 解:连接PC,在面ABCD内过点P作直线l,使l⊥PC,则
∵l⊥PC,l⊥C′C,PC∩C′C=C,
∴l⊥平面PC′C,
∵PC′?平面PC′C,
∴l⊥PC′.

点评 本题考查线面垂直的判定与性质,考查学生的作图能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}\right.$,则目标函数2x-y的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列求导过程:①($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$;②(logax)′=($\frac{lnx}{lna}$)′=$\frac{1}{xlna}$;③(ax)′=(e${\;}^{ln{a}^{x}}$)′=(exlna)′=exlnalna=axlna;④($\frac{cos2x}{sinx-cosx}$)′=(-sinx-cosx)′=cosx-sinx,其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f′(x)是定义在R上的函数y=f(x)的导函数,且f(x)<f′(x),则a=$\frac{1}{2}$f(ln2),b=$\frac{1}{e}$f(1),c=f(0)的大小关系为(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足4x2+4xy+y+6=0,则y的取值范围是(-∞,-2]∪[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={y|y=x2+2x,x∈R},N={y|y=-x2-4x-3,x∈R}.则 M∩N=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A={x|-3≤x≤5},B={x|x≥a或x≤-a,a>0}.若A∩B=∅,求实数α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C1:x2+y2-4x+2y-a2+5=0与圆C2:x2+y2-(2b-6)x-2by+2b2-10b+16=0交于不同的两点A(x1,y1),B(x2,y2),且$\frac{{x}_{1}-{x}_{2}}{{y}_{1}-{y}_{2}}$+$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=0,则实数b的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.同时满足性质:“①对任意的x∈R,f(x+$\frac{π}{2}$)=-f(x)恒成立;②对任意的x∈R,f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x)恒成立;③在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函数.”的函数可以是(  )
A.f(x)=sin(2x+$\frac{π}{6}$)B.f(x)=sin(2x-$\frac{π}{6}$)C.f(x)=cos(2x+$\frac{π}{6}$)D.f(x)=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

同步练习册答案