精英家教网 > 高中数学 > 题目详情
已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点,且PA=AD.
(1)求证:EF∥平面PAD;
(2)求证:面PEC⊥面PCD.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)作CD的中点G,连结FG,EG,先证明出FG∥PD,EG∥AD,根据面面平行的判定定理证明出平面EFG∥平面ADP,进而根据面面平行的性质证明出EF∥平面ADP.
(2)根据线面垂直的判定定理证明出CD⊥EFG,则EF⊥CD可证,进而证明出△PEA≌△CEB得知PE=CE,证明出EF⊥PC,最后利用线面垂直的判定定理证明出EF⊥平面PCD.
最后利用面面垂直的判定定理证明出面PEC⊥面PCD.
解答: (1)作CD的中点G,连结FG,EG,
∵E,F,G均为中点,
∴FG∥PD,EG∥AD,
∵FG?平面ADP,EG?平面ADP,
∴FG∥平面ADP,EG∥平面ADP,
∵FG∩EG=G,FG?平面EFG,EG?平面EFG,
∴平面EFG∥平面ADP,
∵EF?平面EFG,
∴EF∥平面ADP.
(2)∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵CD⊥AD,PA∩AD=A,PA?平面ADP,AD?平面ADP,
∴CD⊥平面ADP,
∵平面EFG∥平面ADP,
∴CD⊥平面EFG,
∵EF?平面EFG,
∴CD⊥EF,
∵PA=AD=BC,∠A=∠B,BE=AE,
∴△PEA≌△CEB,
∴PE=EC,
∵F为PC的中点,
∴EF⊥PC,
∵PC?平面PCD,CD?平面PCD,PC∩CD=C,
∴EF⊥平面PCD.
∵EF?面PEC,
∴面PEC⊥面PCD.
点评:本题主要考查了线面垂直和面面垂直的判定定理的应用.证明面面垂直的主要方法一般是先证明出线面垂直,进而判断出面面垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个60°的二面角的棱上有两点A,B,AC,BD分别是在这个二面角的两个面内垂直于AB的线段,若AB=4,AC=6,BD=8,则CD=(  )
A、2
41
B、2
3
C、2
17
D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

设两数列{an}、{bn}分别满足an+1=an+2n,bn+1=bn+2(n∈N+),且a1=b1=1.
(1)求数列{an}的通项公式;
(2)求数列{
1
an+bn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C经过点(
2
2
2
),且与双曲线x2-
y2
2
=1共焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于M、N两点,交y轴于P点,且记
PM
1
PM
PN
2
NF
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方形ABCD中,AB=2BC,E为CD的中点.将△AED沿AE折起,使平面ADE⊥平面ABCE,连接DB、DC、EB.
(1)求证:CE∥平面ABD;
(2)求证:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校50名学生在一次科普知识竞赛中,初赛成绩全部介于60与100之间,将初赛成绩按如下方式分成四组:第一组[60,70],第二组[70,80],…,第四组[90,100].如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求成绩在[80,90]范围内的人数;
(Ⅱ)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次回答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对l道,则获得二等奖,否则获得三等奖.某同学进入决赛,每道题答对的概率p的值恰好与成绩不少于80分的频率值相同.
(i)求该同学恰好答满4道题而获得一等奖的概率;
(ii)设该同学决赛中答题个数为X,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,O为正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=2PC.
(1)求直线AP与平面BCC1B1所成角的余弦值;
(2)求二面角P-AD1-D的平面角的余弦值;
(3)求点O到平面AD1P的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱柱P-ABCD中,底面ABCD是矩形,E是棱PA的中点,PD⊥BC.求证:
(I)PC∥平面BED;
(Ⅱ)BC⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)叙述并证明面面垂直性质定理;
(Ⅱ)P(x0,y0)到直线L:Ax+By+C=0的距离d=
|Ax0+By0+C|
A2+B2
,并证明此公式.

查看答案和解析>>

同步练习册答案