精英家教网 > 高中数学 > 题目详情
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(1)求椭圆C的方程;
(2)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切圆的方程.
(1);(2).

试题分析:本题主要考查椭圆的定义和方程、圆的方程、点到直线的距离公式等基础知识,同时考查解析几何的基本思想方法和运算求解能力.第一问,利用,得,即,再根据点在椭圆上,得到的值,从而得到椭圆方程;第二问,分2种情况进行讨论,当直线垂直x轴时,的面积很容易求出,与已知面积不相等,所以舍掉,当直线不垂直x轴时,设出直线方程与椭圆方程联立,利用韦达定理,求出,再数形结合求出圆的半径,从而求的面积,解出k的值,确定半径的值,即可求出圆的方程.
试题解析:(1)椭圆C的方程为                            ..(4分)
(2)①当直线⊥x轴时,可得的面积为3,不符合题意.   (6分)
②当直线与x轴不垂直时,设直线的方程为y=k(x+1).代入椭圆方程得:
,显然>0成立,设A,B,则
,可得|AB|=     ..(9分)
又圆的半径,∴的面积=,化简得:,得k=±1,∴r =,圆的方程为    ..(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2).
(1)求双曲线C的方程;
(2)求直线AB方程;
(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的圆心在坐标原点O,且恰好与直线相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=,M,N是直线x=4上的两个动点,且·=0.

(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C1:+=1(a>b>0)的左、右顶点分别为A,B,点P是双曲线C2:-=1在第一象限内的图象上一点,直线AP,BP与椭圆C1分别交于C,D点,若S△ACD=S△PCD.

(1)求P点的坐标.
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的对称轴为坐标轴,焦点是,又点在椭圆上.
(1)求椭圆的方程;
(2)已知直线的斜率为,若直线与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=8x的焦点F作倾斜角为135°的直线交抛物线于A,B两点,则弦AB的长为(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M=1(ab>0)的短半轴长b=1,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4.
(1)求椭圆M的方程;
(2)设直线lxmyt与椭圆M交于AB两点,若以AB为直径的圆经过椭圆的右顶点C,求t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案