精英家教网 > 高中数学 > 题目详情
如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=,M,N是直线x=4上的两个动点,且·=0.

(1)求椭圆的方程;
(2)求|MN|的最小值;
(3)以MN为直径的圆C是否过定点?请证明你的结论。
(1)=1;(2);(3)(4-,0)和(4+,0)  .

试题分析:(1)因为:,且过点P(1, ),列出关于a,b的方程,解得a,b.最后写出椭圆方程即可;(2)设点M(4,m),N(4,n)写出向量的坐标,利用向量的数量积得到mn=-15,又|MN|=|m-n|=|m|+|n|=|m|+,结合基本不等式即可求得MN的最小值;
(3)利用圆心C的坐标和半径得出圆C的方程,再令y=0,得x2-8x+1=0从而得出圆C过定点.
试题解析:(1)由已知可得
∴椭圆的方程为=1                  4分
(2)设M(4,m),N(4,n),∵F1(-1,0),F2(1,0)
=(5,m),=(3,n),由=0mn=-15<0  6分
∴|MN|=|m-n|=|m|+|n|=|m|+≥2  ∴|MN|的最小值为2 10分
(3)以MN为直径的圆C的方程为:(x-4)2+(y-)=()2  11分
令y=0得(x-4)2=-mn=15x=4±
所以圆C过定点(4-,0)和(4+,0)                      13分 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

以椭圆的一个顶点为直角顶点作此椭圆的内接等腰直角三角形,试问:(1)这样的等腰直角三角形是否存在?若存在,写出一个等腰直角三角形两腰所在的直线方程。若不存在,说明理由。(2)这样的等腰直角三角形若存在,最多有几个?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(1)求椭圆C的方程;
(2)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,一个焦点为F(0,),且长轴长与短轴长的比是∶1.
 
(1)求椭圆C的方程;
(2)若椭圆C上在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PAPB分别交椭圆C于另外两点AB,求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的一条渐近线与圆至多有一个交点,则双曲线离心
率的取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
(1)设为两个定点,为非零常数,,则动点的轨迹为双曲线;
(2)若等比数列的前项和,则必有
(3)若的最小值为2;
(4)双曲线有相同的焦点;
(5)平面内到定点(3,-1)的距离等于到定直线的距离的点的轨迹是抛物线.
其中正确命题的序号是               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2,过F1作垂直于椭圆长轴的弦PQ,|PQ|为3.
(1)求椭圆E的方程;
(2)若过F1的直线l交椭圆于A,B两点,判断是否存在直线l使得∠AF2B为钝角,若存在,求出l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若实数xy满足x|x|-y|y|=1,则点(xy)到直线yx的距离的取值范围是(  )
A.[1,) B.(0,]C.D.(0,1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则方程表示的曲线不可能是(   )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

同步练习册答案