精英家教网 > 高中数学 > 题目详情
(2013•惠州模拟)(理科)设椭圆M:
x2
a2
+
y2
2
=1(a>
2
)
的右焦点为F1,直线l:x=
a2
a2-2
与x轴交于点A,若
OF1
+2
AF1
=0
(其中O为坐标原点)
(1)求椭圆M的方程;
(2)设点P是椭圆M上的任意一点,线段EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求
PE
PF
的最大值.
分析:(1)确定A,F1的坐标,利用
OF1
+2
AF1
=0
建立方程,从而可求椭圆M的方程;
(Ⅱ)利用向量的数量积运算,将求
PE
PF
的最大值转化为求
NP
2
的最大值,利用配方法可求.
解答:解:(1)由题设知,A(
a2
a2-2
,0)
,F1
a2-2
,0

OF1
+2
AF1
=0
,∴
a2-2
=2(
a2
a2-2
-
a2-2
)

∴a2=6
∴椭圆M的方程为
x2
6
+
y2
2
=1

(2)∵圆N:x2+(y-2)2=1的圆心为点N
PE
PF
=(
NE
-
NP
)•(
NF
-
NP
)
=
NP
2
-
NF
2
=
NP
2
-1

从而将求
PE
PF
的最大值转化为求
NP
2
的最大值
P是椭圆M上的任一点,设P(x0,y0),则有
x02
6
+
y02
2
=1
,即x02=6-3y02
又N(0,2),∴
NP
2
=x02+(y0-2)2=-2(y0+1)2+12
y0∈[-
2
2
]
,∴当y0=-1时,
NP
2
取最大值12
PE
PF
的最大值为11.
点评:本题以向量为载体,考查椭圆的标准方程,考查向量的数量积,考查配方法求函数的最值,综合性强,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州模拟)设正项等比数列{an}的前n项和为Sn,已知a3=4,a4a5a6=212
(Ⅰ)求首项a1和公比q的值;
(Ⅱ)若Sn=210-1,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目.
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)不等式组
x≤2
y≥0
y≤x-1
表示的平面区域的面积是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为(  )

查看答案和解析>>

同步练习册答案