精英家教网 > 高中数学 > 题目详情
(2013•黑龙江二模)如图,在四棱锥P-ABCD中,侧棱PA丄底面ABCD底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.
(I)若F为PE的中点,求证BF∥平面ACE;
(Ⅱ)求三棱锥P-ACE的体积.
分析:(I)由题意可得E、F都是线段PD的三等分点.设AC与BD的交点为O,则OE是△BDF的中位线,故有BF∥OE,再根据直线和平面平行的判定定理证得 BF∥平面ACE.
(II)由条件证明CD⊥平面PAE,再根据三棱锥P-ACE的体积VP-ACE=VC-PAE=
1
3
S△PAE•CD=
1
3
2
3
1
2
•PA•PD)•AB=
1
9
•PA•PD•AB,运算求得结果.
解答:解:(I)若F为PE的中点,由于底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE,故E、F都是线段PD的三等分点.
设AC与BD的交点为O,则OE是△BDF的中位线,故有BF∥OE,而OE在平面ACE内,BF不在平面ACE内,故BF∥平面ACE.
(II)由于侧棱PA丄底面ABCD,且ABCD为矩形,故有CD⊥PA,CD⊥AD,故CD⊥平面PAE,.
三棱锥P-ACE的体积VP-ACE=VC-PAE=
1
3
S△PAE•CD=
1
3
•(
2
3
•S△PAD)•AB=
1
3
2
3
1
2
•PA•PD)•AB=
1
9
•PA•PD•AB=
1
9
•1•2•1=
2
9
点评:本题主要考查直线和平面垂直的判定定理的应用,用等体积法求棱锥的体积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黑龙江二模)某几何体的三视图 (单位:cm) 如图所示,则此几何体的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)求“方程(
3
5
x+(
4
5
x=1的解”有如下解题思路:设f(x)=(
3
5
x+(
4
5
x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x6+x2=(x+2)3+(x+2)的解集为
{-1,2}
{-1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)已知函数f(x)=lnx,x1,x2∈(0,
1
e
),且x1<x2,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)复平面内,表示复故
1+i
2-i
(其中i为虚数单位)的点位于(  )

查看答案和解析>>

同步练习册答案