【题目】设等比数列{an}的各项均为正数,其前n项和为Sn , 若a1=1,a3=4.
(1)若Sk=63,求k的值;
(2)设bn=log2an , 证明数列{bn}是等差数列;
(3)设cn=(﹣1)nbn , 求T=|c1|+|c2|+|c3|+…+|cn|.
【答案】
(1)解:(设等比数列{an}的公比为q,由已知a1=1,a3=4,得q2= =4.
又{an}的各项均为正数,∴q=2.)
而Sk= =63,∴2k﹣1=63,解得k=6.
(2)证明:an=2n﹣1, bn=log2an=n﹣1,
bn﹣bn﹣1=n﹣1﹣(n﹣1)+1=1.
故数列{bn}是公差为1,首项为0的等差数列.
(3)解:cn=(﹣1)nbn=(﹣1)n(n﹣1).
|cn|=n﹣1.
∴T=|c1|+|c2|+|c3|+…+|cn|=0+1+2+…+(n﹣1)=
【解析】(1)利用等比数列的通项公式与求和公式即可得出.(2)an=2n﹣1 , bn=log2an=n﹣1,作差即可证明.(3)cn=(﹣1)nbn=(﹣1)n(n﹣1),|cn|=n﹣1.再利用等差数列的求和公式即可得出.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系.
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:(k﹣1)x﹣2y+5﹣3k=0(k∈R)恒过定点P,圆C经过点A(4,0)和点P,且圆心在直线x﹣2y+1=0上.
(1)求定点P的坐标;
(2)求圆C的方程;
(3)已知点P为圆C直径的一个端点,若另一个端点为点Q,问:在y轴上是否存在一点M(0,m),使得△PMQ为直角三角形,若存在,求出m的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,若cosA= ,c=3b,且△ABC面积S△ABC= .
(1)求边b.c;
(2)求边a并判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在椭圆: ()上,设, , 分别为左顶点、上顶点、下顶点,且下顶点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点, ()为椭圆上两点,且满足,求证: 的面积为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.
(1)当切线PA的长度为 时,求点P的坐标;
(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段AB长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,其左、右焦点分别为,点是坐标平面内一点,且, (为坐标原点).
(1)求椭圆的方程;
(2)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过该点?若存在,求出点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PA与AB,AD的夹角都等于60°,M是PC的中点,设 = , = , = .
(1)试用 , , 表示出向量 ;
(2)求BM的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com