精英家教网 > 高中数学 > 题目详情
如图,在棱长为1正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点
(1)求直线AM和CN所成角的余弦值;
(2)若P为B1C1的中点,求直线CN与平面MNP所成角的余弦值;
(3)P为B1C1上一点,且,当 B1D⊥面PMN时,求的值.
 
解:建系 D(0,0,0) A(1,0,0)   B(1,1,0)  C(0,1,0)
B(1,1,1) C(0,1,1)   D(0,0,1)   M(1,1/2,1) N(1,1,1/2)                   2分
(1)     COS="2/5                     " 6分
(2)P(1/2,1,1) ="(0,1/2,-1/2)   " =(-1/2,1/2,0)
法向量 则   
   (1,0,1/2)                                         8分
则cos=                                                  12分
(3)(-1,-1,1)   因为E在BD
 所以                   14分
因为(0,1,-1)          则                                16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图1, 在直角梯形中, 为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示.
(1)求证:平面
(2)求二面角的余弦值.   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,EF是侧棱PDPC的中点。
(1)求证:平面PAB
(2)求直线PC与底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,.
(1)求证:平面平面
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

(1)求
(2)求
(3)
(4)求CB1与平面A1ABB1所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方体的棱长为,点的中点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体的棱长为1,的中点,则是平面的距离是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:正四棱柱ABCD—A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别为棱AB、BC的中点.
(1)求证:平面B1EF⊥平面BDD1B1
(2)求点D1到平面B1EF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,且的夹角为钝角,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案