【题目】点
为坐标原点,直线
经过抛物线
的焦点
.
![]()
(1)若点
到直线
的距离为
, 求直线
的方程;
(2)设点
是直线
与抛物线
在第一象限的交点.点
是以点
为圆心,
为半径的圆与
轴负半轴的交点.试判断直线
与抛物线
的位置关系,并给出证明.
科目:高中数学 来源: 题型:
【题目】通过随机询问
名不同性别的大学生是否爱好某项运动,得到如下的
列联表:
男 | 女 | |
爱好 | 40 | 20 |
不爱好 | 20 | 30 |
由
算得
,
参照附表,以下不正确的有( )
附表:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
A.在犯错误的概率不超过
的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过
的前提下,认为“爱好该项运动与性别无关”
C.有
以上的把握认为“爱好该项运动与性别有关”
D.有
以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥
的底面是边长为
的菱形,
,点E是棱BC的中点,
,点P在平面ABCD的射影为O,F为棱PA上一点.
![]()
1
求证:平面
平面BCF;
2
若
平面PDE,
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),直线
与直线
平行,且过坐标原点,圆
的参数方程为
(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)求直线
和圆
的极坐标方程;
(2)设直线
和圆
相交于点
、
两点,求
的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
:
的左、右焦点分别为
,
轴,直线
交
轴于
点,
,
为椭圆
上的动点,
的面积的最大值为1.
![]()
(1)求椭圆
的方程;
(2)过点
作两条直线与椭圆
分别交于
且使
轴,如图,问四边形
的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:
,则下列说法中正确的是( )
![]()
A.函数
是圆O的一个太极函数
B.圆O的所有非常数函数的太极函数都不能为偶函数
C.函数
是圆O的一个太极函数
D.函数
的图象关于原点对称是
为圆O的太极函数的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间
内,按
,
,
,
,
,
分成6组,其频率分布直方图如图所示.
![]()
(1)估计该社区居民最近一年来网购消费金额的中位数;
(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的
列联表,并判断有多大把握认为“网购迷与性别有关系”;
男 | 女 | 合计 | |
网购迷 | 20 | ||
非网购迷 | 45 | ||
合计 | 100 |
(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:
网购总次数 | 支付宝支付次数 | 银行卡支付次数 | 微信支付次数 | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为
,求
的数学期望.
附:观测值公式:![]()
临界值表:
| 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点
,定义
,其中
为坐标原点,对于下列结论:
符合
的点
的轨迹围成的图形面积为8;
设点
是直线:
上任意一点,则
;
设点
是直线:
上任意一点,则使得“
最小的点
有无数个”的必要条件是
;
设点
是圆
上任意一点,则
.
其中正确的结论序号为
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com