精英家教网 > 高中数学 > 题目详情
10.有一个几何体的三视图及其尺寸如图(单位cm),则该几何体的侧面积及体积为(  )
A.24πcm2,12πcm3B.15πcm2,36πcm3C.15πcm2,12πcm3D.以上都不正确

分析 由已知中的三视图,可知该几何体是一个圆锥,底面半径为3,高为4,代入棱锥体积和表面积公式即可

解答 解:由已知中的三视图,可知该几何体是一个圆锥,底面半径为3,高为4,母线长为5.
体积V=$\frac{1}{3}$πr2h=$\frac{1}{3}×π×9×4$=12π.
表面积S=πrl=π×3×5=15π.
故选C.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知曲线${C_1}:y=cosx,{C_2}:y=sin(2x+\frac{2π}{3})$,则下面结论正确的是(  )
A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移$\frac{π}{6}$个单位长度,得到曲线C2
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向右平移 $\frac{π}{6}$个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的 $\frac{1}{2}$倍,纵坐标不变,再把得到的曲线向左平移 $\frac{π}{12}$个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从集合{11,12,13,14,15}中随机取出一个数,设事件A为“取出的数为偶数”,事件B为“取出的数为奇数”,则事件A与B(  )
A.是互斥且对立事件B.是互斥且不对立事件
C.不是互斥事件D.不是对立事件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线3x+$\sqrt{3}$y+1=0的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>0,b>0,若直线ax+by-2=0过点(1,2),则$\frac{1}{a}+\frac{1}{2b}$的最小值为(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{x}{1+x}$,设f1(x)=f(x),fn(x)=fn-1[f1(x)],n=1,2,3…
(Ⅰ)求f2(x),f3(x)的表达式;
(Ⅱ)猜想fn(x)的表达式;并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果某年年份的各位数字之和为8,我们称该年为“吉祥年”.例如,今年2015年的各数字之和为8,所以今年恰为“吉祥年”,那么从2000年到3999年中“吉祥年“共有(  )个.
A.42B.43C.49D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在区间(0,1)内为增函数,则实数a的取值范围是(  )
A.[2,+∞)B.(0,2)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为M,过原点O的直线交椭圆于A,B两点,若|AB|=|BM|=4,cos∠ABM=$\frac{3}{4}$,则椭圆方程为$\frac{{x}^{2}}{8}+\frac{15{y}^{2}}{56}=1$.

查看答案和解析>>

同步练习册答案