精英家教网 > 高中数学 > 题目详情
1.解不等式:5+|x|<2|x|-4.

分析 不等式即|x|>9,由此求得x的范围.

解答 解:不等式:5+|x|<2|x|-4,即|x|>9,求得 x>9 或x<-9,
故不等式的解集为{x|x>9 或x<-9}.

点评 本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}中,a1=5,7a2=4a4,数列{bn}前n项和为Sn,且Sn=2(bn-1)(n∈N*
(Ⅰ)求数列{an}和{bn}的通项公式
(Ⅱ)设数列cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.不论m怎样变化,圆x2+y2+mx+my-4=0是否恒过定点?若存在,请求出定点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a1=1,an+1=2an+1,cn=$\frac{{2}^{n}}{{a}_{n}•{a}_{n+1}}$,求证:c1+c2+…+cn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在△ABC中,a:b:c=7:8:13,则cosC=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解方程:ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{4{x}^{2}+1}$+2x)+3x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的前n项和为Sn=t•3n-2-$\frac{1}{3}$,则实数t的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\frac{3x-2}{2x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+ax+3,
(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;
(2)当x∈[-2,2]时,f(x)≥a恒成立,求实数a的取值范围;
(3)当a∈[4,6]时,f(x)≥0恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案