精英家教网 > 高中数学 > 题目详情
10.求函数y=$\frac{3x-2}{2x+1}$的值域.

分析 把函数解析式变形为y=$-\frac{7}{2(2x+1)}+\frac{3}{2}$,由此可得函数的值域.

解答 解:y=$\frac{3x-2}{2x+1}$=$\frac{\frac{3}{2}(2x+1)-\frac{7}{2}}{2x+1}$=$-\frac{7}{2(2x+1)}+\frac{3}{2}$,
∵$-\frac{7}{2(2x+1)}≠0$,∴$-\frac{7}{2(2x+1)}+\frac{3}{2}≠\frac{3}{2}$.
∴函数y=$\frac{3x-2}{2x+1}$的值域为{y|y$≠\frac{3}{2}$}.

点评 本题考查函数的值域的求法,对函数解析式的变形是解答该题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知数列{an},{bn}的通项公式分别是an=n,bn=2n,其前n项的和分别为An,Bn,cn=anBn+bnAn-anbn,则数列{cn}的前10项的和为112530.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解不等式:5+|x|<2|x|-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在区间[$\frac{7}{4}$,$\frac{9}{4}$]上是否存在对称轴,存在求出方程;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义在(0,+∞)上的增函数,且f(x+1)<f(2),则函数x的取值范围是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.2015年春节放假安排,农历除夕至正月初六放假,共7天,某单位安排7位员工值班,每人值班1天,每天安排1人,若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有(  )
A.1440种B.1360种C.1282种D.1128种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a>0,x=$\frac{1}{2}$(a${\;}^{\frac{1}{n}}$-a${\;}^{-\frac{1}{n}}$),求(x+$\sqrt{1+{x}^{2}}$)n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=lnx在点A(1,0)处的切线方程为(  )
A.x-1-0B.x+y-1=0C.x-y-1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{|2x-1|,}&{x>0}\\{\frac{3}{2}x+2,}&{x≤0}\end{array}\right.$,若关于x的方程f(sinx)=m在区间[0,2π]上有四个不同的实数根,则实数m的取值范围是(  )
A.0<m<$\frac{1}{2}$B.0<m≤$\frac{1}{2}$C.$\frac{1}{2}$<m≤1D.$\frac{1}{2}$<m<1

查看答案和解析>>

同步练习册答案