精英家教网 > 高中数学 > 题目详情
设α=2014°-360°×k,β=2014°,若α是与β终边相同的最小正角,则k=
 
分析:利用终边相同的角的集合定理即可得出.
解答:解:∵β=2014°=360°×5+214°,α是与β终边相同的最小正角.
∴α=2014°-360°×k=214°,解得k=5.
故答案为:5.
点评:本题考查了终边相同的角的集合定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f(2013)+f(2014)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•长宁区一模)设f(x)是R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•广东模拟)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦点,椭圆上一点M满足∠MF1O=
π
3
,N为MF1的中点且ON⊥MF1,则椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•泸州一模)已知函数f(x)=
a
x
+x+(a-1)lnx+15a
,F(x)=-2x3+3(a+2)x2+6x-6a-4a2,其中a<0且a≠-1.
(Ⅰ) 当a=-2,求函数f(x)的单调递增区间;
(Ⅱ) 若x=1时,函数F(x)有极值,求函数F(x)图象的对称中心坐标;
(Ⅲ)设函数g(x)=
F(x)-6x2+6(a-1)x•ex,x≤1
e•f(x),                             x>1
(e是自然对数的底数),是否存在a使g(x)在[a,-a]上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定k∈N+,设函数f:N+→N+满足:对于任意大于k的正整数n,f(n)=n-k.
(1)设k=1,则f(2014)=
2013
2013

(2)设k=3,且当n≤3时,2≤f(n)≤3,则不同的函数f的个数为
8
8

查看答案和解析>>

同步练习册答案