精英家教网 > 高中数学 > 题目详情
已知z=2x+y,x,y满足
y≥x
x+y≤2
x≥m
,且z的最大值是最小值的4倍,则m的值是(  )
A、
1
4
B、
1
5
C、
1
6
D、
1
7
考点:简单线性规划
专题:计算题,不等式的解法及应用
分析:根据题意,可得m<1且不等式的表示的平面区域为一个有界区域.由此作出不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=2x+y对应的直线进行平移,可得当x=y=1时z取得最大值3,当x=y=m时z取得最小值3m.结合题意建立关于m的方程,解之即可得到m的值.
解答: 解:∵z=2x+y既存在最大值,又存在最小值,
∴不等式表示的平面区域为一个有界区域,可得m<1
作出不等式组
y≥x
x+y≤2
x≥m
表示的平面区域,
得到如图的△ABC及其内部,其中A(1,1),B(m,m),C(m,2-m)
设z=F(x,y)=2x+y,将直线l:z=2x+y进行平移,
当l经过点A时,目标函数z达到最大值;当l经过点B时,目标函数z达到最小值
∴z最大值=F(1,1)=3;z最小值=F(m,m)=3m
∵z的最大值是最小值的4倍,
∴3=4×3m,解之得m=
1
4

故选:A
点评:本题给出含有字母参数的二元一次不等式组,求在目标函数z=2x+y的最大值等于最小值的4倍的情况下求参数m的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若A=
π
4
sinB=
2
cosC
,则△ABC的形状是(  )
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙两个同学同时报名参加某重点高校2013年自主招生考试,高考前自主招生的程序为审核材料文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格,已知甲、乙两人审核过关的概率分别为
3
5
1
2
,审核过关后,甲,乙两人文化课测试合格的概率分别为
3
4
4
5

(1)求甲,乙两人至少有一个通过审核的概率;
(2)设X表示甲,乙两人中获得自主招生入选资格的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,且∠DAB=60°,AB=2,E为AD的中点.
(1)求证:AD⊥PB;
(2)在棱AB上是否存在点F,使EF与平面PDC成角正弦值为
15
5
,若存在,确定线段AF的长度,不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是圆O的切线,切点为A,D点在圆内,DB与圆相交于C,若BC=DC=3,OD=2,AB=6,则圆O的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义对?x∈R,?T∈R,使得f(x+T)=f(x),则称f(x)为周期函数,若f(x+1)=-f(x),且f(x)为R上的偶函数,当x∈[0,1]时,f(x)=x2,同时,在R上存在一个函数g(x)=lgx,在R上讨论函数y=f(x)与y=g(x)的图象的交点个数(  )
A、10B、9C、8D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
1
3
,遇到红灯时停留的时间都是2 分钟.设这名学生在路上遇到红灯的个数为变量ξ、停留的总时间为变量X,
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)这名学生在上学路上遇到红灯的个数至多是2个的概率.
(3)求X的标准差
D(X)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:min{a,b}=
a,a≤b
b,a>b
,在区域
0≤x≤2
0≤y≤6
内任取一点P(x,y),则x、y满足min{x2+x+2y,x+y+4}=x2+x+2y的概率为(  )
A、
5
9
B、
2
9
C、
1
3
D、
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=2,an+1=2an+2n+2(n∈N*)
(I)设bn=
an
2n
证明:数列{bn}为等差数列,并求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案