精英家教网 > 高中数学 > 题目详情
定义:min{a,b}=
a,a≤b
b,a>b
,在区域
0≤x≤2
0≤y≤6
内任取一点P(x,y),则x、y满足min{x2+x+2y,x+y+4}=x2+x+2y的概率为(  )
A、
5
9
B、
2
9
C、
1
3
D、
4
9
考点:几何概型
专题:概率与统计
分析:本题是一个几何概型,试验包含的所有事件对应的集合Ω={(x,y)|0≤x≤2,0≤y≤6},满足条件的事件A={(x,y)|0≤x≤2,0≤y≤6,x2+x+2y≤x+y+4},算出两个集合对应的面积,面积之比就是要求的概率.
解答: 解:本题是一个几何概型,
∵试验包含的所有事件对应的集合Ω={(x,y)|0≤x≤2,0≤y≤6},
∴SΩ=1×1=1,
∵满足条件的事件A={(x,y)|0≤x≤2,0≤y≤6,x2+x+2y≤x+y+4},即A={(x,y)|0≤x≤2,0≤y≤6,y≤4-x2},
∴SA=
2
0
(4-x2)dx=(4x-
1
3
x3
)|
 
2
0
=
16
3

∴由几何概型公式得到P=
16
3
2×6
=
4
9

故选D.
点评:本题以二元一次不等式组表示的平面区域为例,求几何概型的概率,着重考查了简单线性规划和几何概型的概率求法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以点A(1,0)为圆心,以2为半径的圆的方程为
 
,若直线y=kx+2与圆A有公共点,那么k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z=2x+y,x,y满足
y≥x
x+y≤2
x≥m
,且z的最大值是最小值的4倍,则m的值是(  )
A、
1
4
B、
1
5
C、
1
6
D、
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

经市场调查:生产某产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=
1
3
x2+x
(万元),在年产量不小于8万件时,W(x)=6x+
100
x
-38
(万元).通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;
(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在单位圆x2+y2=1上任取一点M,作MN⊥x轴,垂足为N,
NQ
=
2
NM

(Ⅰ)求动点Q的轨迹C的方程;
(Ⅱ)设点A(a,0),点P为曲线C上任一点,求点A到点P距离的最大值d(a);
(Ⅲ)在0<a<1的条件下,设△POA的面积为S1(O是坐标原点,P是曲线C上横坐标为a的点),以d(a)为边长的正方形的面积为S2.若正数m满足S1
1
4
mS2
,问m是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinA+sinB=sinC•(cosA+cosB),试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别为a、b、c,若A<B<90°<C,且2b=a+c,则
c
a
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),直线AP与直线AB相交于点P,它们的斜率之积为-
1
4
,求点P的轨迹方程(化为标准方程).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.

查看答案和解析>>

同步练习册答案