精英家教网 > 高中数学 > 题目详情
(2009•黄冈模拟)已知函数f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若(et+2)x2+etx+et-2≥0对满足|x|≤1的任意实数x恒成立,求实数t的取值范围(这里e是自然对数的底数);
(Ⅲ)求证:对任意正数a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ
分析:(Ⅰ)对函数求导,利用导数可判断函数的单独区间,进而可求函数的极大值,极小值.
(Ⅱ)原不等式可化为et
2(1-x2)
1+x+x2
由(Ⅰ)知,|x|≤1时,f(x)的最大值为
2
3
3
.则可得
2(1-x2)
1+x+x2
的最大值为
4
3
3
,由恒成立的意义知道et
4
3
3
,从而可求t.
(Ⅲ)设g(x)=f(x)-x=
1-x2
1+x+x2
-x(x>0)
,对g(x)求导可判断g(x)在(0,+∞)上是减函数,而作差可证明(
λa+μb
λ+μ
)2
λa2b2
λ+μ
.由g(x)的单调性可证.
解答:解:(Ⅰ)f′(x)=
-2x(1+x+x2)-(2x+1)(1-x2)
(1+x+x2)2
=
-[x-(-2+
3
)]•[x-(-2-
3
)]
(1+x+x2)2

∴f(x)的增区间为(-2-
3
,-2+
3
)
,f(x)减区间为(-∞,-2-
3
)
(-2+
3
,+∞)

极大值为f(-2+
3
)=
2
3
3
,极小值为f(-2-
3
)=-
2
3
3
.…4分
(Ⅱ)原不等式可化为et
2(1-x2)
1+x+x2
由(Ⅰ)知,|x|≤1时,f(x)的最大值为
2
3
3

2(1-x2)
1+x+x2
的最大值为
4
3
3
,由恒成立的意义知道et
4
3
3
,从而t≥ln
4
3
3
…8分
(Ⅲ)设g(x)=f(x)-x=
1-x2
1+x+x2
-x(x>0)

g′(x)=f′(x)-1=
-(x2+4x+1)
(1+x+x2)2
-1=-
x4+2x3+4x2+6x+2
(1+x+x2)2

∴当x>0时,g'(x)<0,故g(x)在(0,+∞)上是减函数,
又当a、b、λ、μ是正实数时,(
λa+μb
λ+μ
)2-
λa2b2
λ+μ
=-
λμ(a-b)2
(λ+μ)2
≤0

(
λa+μb
λ+μ
)2
λa2b2
λ+μ

由g(x)的单调性有:f[(
λa+μb
λ+μ
)
2
]-(
λa+μb
λ+μ
)2≥f(
λa2b2
λ+μ
)-
λa2b2
λ+μ

f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2-
λa2b2
λ+μ
.…12分
点评:本题主要考查了函数的恒成立问题的转化的应用,解题的关键是熟练应用导数的知识判断函数的单调性、求解函数的极值及最值及综合应用函数知识求解问题的综合能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•黄冈模拟)某地正处于地震带上,预计20年后该地将发生地震.当地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64am2,每年拆除的数量相同;新城区计划用十年建成,第一年建设住房面积2am2,开始几年每年以100%的增长率建设新住房,然后从第五年开始,每年都比上一年减少2am2
(1)若10年后该地新、旧城区的住房总面积正好比目前翻一番,则每年旧城区拆除的住房面积是多少m2
(2)设第n(1≤n≤10且n∈N)年新城区的住房总面积为Snm2,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)如图是一几何体的平面展开图,其中ABCD为正方形,E、F分别为PA、PD的中点.在此几何体中,给出下面四个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的命题的个数是
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0则
(1)f(2009)=
-1
-1

(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为x,y,记ξ=x+y.
(1)求随机变量ξ的分布列及数学期望;
(2)设“函数f(x)=x2-ξx-1在区间(2,3)上有且只有一个零点”为事件A,求事件A发生的概率.

查看答案和解析>>

同步练习册答案