【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,AA1 , AB,CC1的中点分别为E,F,G,则EF与A1G所成的角为( )
A.30°
B.45°
C.60°
D.90°
【答案】B
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,
则E(2,0,1),F(2,1,0),A1(2,0,2),G(0,2,1),
=(0,1,﹣1), =(﹣2,2,﹣1),
设EF与A1G所成的角为θ,
则cosθ= = = ,
∴θ=45°.
∴EF与A1G所成的角为45°.
故选:B.
【考点精析】根据题目的已知条件,利用异面直线及其所成的角的相关知识可以得到问题的答案,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
科目:高中数学 来源: 题型:
【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.
(1)求AC边所在直线方程;
(2)求顶点C的坐标;
(3)求直线BC的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x.
(1)求函数f(x)(x∈R)的解析式;
(2)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全完整函数f(x)的图象;
(3)求使f(x)>0的实数x的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答题。
(1)已知方程x2+(m﹣3)x+m=0有两个不等正实根,求实数m的取值范围.
(2)不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0对任意x∈R恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).
(1)求抛物线C的方程;
(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g(x)=cos(2x﹣ )图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个命题: ①若直线a,b异面,b,c异面,则a,c异面;
②若直线a,b相交,b,c相交,则a,c相交;
③若a∥b,则a,b与c所成的角相等;
④若a⊥b,b⊥c,则a∥c.
其中真命题的个数为( )
A.4
B.3
C.2
D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com