精英家教网 > 高中数学 > 题目详情
20.0<x<2是不等式|x+1|<3成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 解绝对值不等式,根据集合的包含关系判断即可.

解答 解:由|x+1|<3,解得:-4<x<2,
故0<x<2是不等式|x+1|<3成立的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:
资源
产品
资金(万元)场地(平方米)
A2100
B3550
现有资金12万元,场地400平方米,生产每吨A种产品可获利润3万元;生产每吨B种产品可获利润2万元,分别用x,y表示计划生产A、B两种产品的吨数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问A、B两种产品应各生产多少吨,才能产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=$\frac{7}{8}$,且an+1=$\frac{1}{2}$an+$\frac{1}{3}$,n∈N*
(1)求证:{an-$\frac{2}{3}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,则这个几何体的体积是(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=$\frac{1}{x}$,当x∈(-∞,-2)时,f(x)的解析式为(  )
A.f(x)=-$\frac{1}{x}$B.f(x)=-$\frac{1}{x-2}$C.f(x)=$\frac{1}{x+2}$D.f(x)=-$\frac{1}{x+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x、y满足约束条件$\left\{\begin{array}{l}{x-y≥1}\\{2x-y+1≤0}\end{array}\right.$,且目标函数z=mx-ny(m>0,n<0)的最大值为-6,则$\frac{n}{m-1}$的取值范围是(  )
A.[-2,0]∪[$\frac{1}{2}$,+∞)B.[2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2ax2+4x-3-a,a∈R.
(1)当a=1时,求函数f(x)在[-1,1]上的最大值;
(2)如果函数f(x)在R上有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A={y|y=x+1},B=(x,y)|x2+y2=1},则集合A∩B中元素的个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线$\frac{x}{a}$+$\frac{y}{b}$=1通过点M(cosα,sinα),则(  )
A.a2+b2≤1B.a2+b2≥1C.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1D.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1

查看答案和解析>>

同步练习册答案