精英家教网 > 高中数学 > 题目详情
已知定义在区间[0,3]上的函数f(x)=kx2-2kx的最大值为3,那么实数k的取值范围为    
【答案】分析:先用配方法将函数变形,求出其对称轴,再根据开口方向,确定函数的单调性,明确取最大值的状态,再计算.
解答:解析:∵f(x)=k(x-1)2-k,
(1)当k>0时,二次函数图象开口向上,
当x=3时,f(x)有最大值,f(3)=k•32-2k×3=3k=3
∴k=1;
(2)当k<0时,二次函数图象开口向下,
当x=1时,f(x)有最大值,f(1)=k-2k=-k=3
∴k=-3.
(3)当k=0时,显然不成立.
故k的取值集合为:{1,-3}.
故答案为:{1,-3}
点评:本题主要考查函数最值的求法,基本思路是:二次项系数位置有参数时,先分类讨论,再确定对称轴和开口方向,明确单调性,再研究函数最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=f(2-x)的图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2x3

(1)求函数y=f(x)的最小值m(a)及g(x)的值域;
(2)若对任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)已知定义在区间[0,
2
]上的函数y=f(x)的图象关于直线x=
4
对称,当x
4
时,f(x)=cosx,如果关于x的方程f(x)=a有解,记所有解的和为S,则S不可能为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

填空题
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,则sin2x的值为
1
9
1
9

(2)已知定义在区间[0,
2
]
上的函数y=f(x)的图象关于直线x=
4
对称,当x≥
4
时,f(x)=cosx,如果关于x的方程f(x)=a有四个不同的解,则实数a的取值范围为
(-1,-
2
2
)
(-1,-
2
2
)


(3)设向量
a
b
c
满足
a
+
b
+
c
=
0
(
a
-
b
)⊥
c
a
b
,若|
a
|=1
,则|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2xx+1

(1)求函数y=f(x)的最小值m(a)及g(x)的值域;
(2)若对任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案