精英家教网 > 高中数学 > 题目详情
如图,已知椭圆
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
及两条直线l1:x=-
a
2
 
c
l2:x=
a
2
 
c
,其中c=
a
2
 
-
b
2
 
,且l1,l2分别交x轴于C、D两点.从l1上一点A发出一条光线经过椭圆的左焦点F被石轴反射后与l2交于点B.若AF⊥BF,且∠ABD=75°,则椭圆的离心率等于(  )
分析:根据光线反射的几何性质,得∠AFC=∠AFC=45°,从而得到Rt△ACF与Rt△BDF都是等腰直角三角形.Rt△ABF中算出∠ABF=30°,得到|BF|=
3
|AF|,从而有|DF|=
3
|CF|,结合椭圆的几何性质将其转化为关于a、c的等式,化简整理即可得到该椭圆的离心率.
解答:解:根据题意,得∠AFC=∠AFC=
1
2
(180°-90°)=45°
∴Rt△ACF与Rt△BDF都是等腰直角三角形.
∵∠ABD=75°,∴∠ABF=75°-45°=30°
Rt△ABF中,tan30°=
|AF|
|BF|
=
3
3
,得|BF|=
3
|AF|
∵|CF|=
2
2
|AF|,|DF|=
2
2
|BF|,∴|DF|=
3
|CF|…(*)
∵椭圆方程是
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)

∴左焦点F(-c,0)
因此,|DF|=
a2
c
+c,|CF|=
a2
c
-c,代入(*)得
a2
c
+c=
3
a2
c
-c),即(
3
+1)c=(
3
-1)
a2
c

∴两边都除以a,得(
3
+1)e=(
3
-1)
1
e
,得e2=
(
3
-1)2
2

∴离心率e=
3
-1
2
=
6
-
2
2
(舍负)
故选:A
点评:本题给出光的反射问题,求椭圆的离心率,着重考查了椭圆的标准方程与简单几何性质和直角三角形的有关性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
b2
+
y2
a2
=1(a>b>0)
的左、右焦点分别为F1(0,c)、F2(0,-c)(c>0),抛物线P:x2=2py(p>0)的焦点与F1重合,过F2的直线l与抛物线P相切,切点E在第一象限,与椭圆C相交于A、B两点,且
F2B
=λ
AF2

(1)求证:切线l的斜率为定值;
(2)若动点T满足:
ET
=μ(
EF1
+
EF2
),μ∈(0,
1
2
)
,且
ET
OT
的最小值为-
5
4
,求抛物线P的方程;
(3)当λ∈[2,4]时,求椭圆离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县一模)如图,已知椭圆C:
x2
a2
-
y2
b2
=1
(a>0,b>0)过点P(
2
6
),上、下焦点分别为F1、F2,向量
PF1
PF2
.直线l与椭圆交于A,B两点,线段AB中点为m(
1
2
,-
3
2
).
(1)求椭圆C的方程;
(2)求直线l的方程;
(3)记椭圆在直线l下方的部分与线段AB所围成的平面区域(含边界)为D,若曲线x2-2mx+y2+4y+m2-4=0与区域D有公共点,试求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州一模)如图,已知椭圆C:
x2
a2
+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:x2+y2-6x-2y+7=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)不过点A的动直线l与椭圆C相交于PQ两点,且
AP
AQ
=0.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

同步练习册答案