Èçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
b2
+
y2
a2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨0£¬c£©¡¢F2£¨0£¬-c£©£¨c£¾0£©£¬Å×ÎïÏßP£ºx2=2py£¨p£¾0£©µÄ½¹µãÓëF1Öغϣ¬¹ýF2µÄÖ±ÏßlÓëÅ×ÎïÏßPÏàÇУ¬ÇеãEÔÚµÚÒ»ÏóÏÞ£¬ÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÇÒ
F2B
=¦Ë
AF2
£®
£¨1£©ÇóÖ¤£ºÇÐÏßlµÄбÂÊΪ¶¨Öµ£»
£¨2£©Èô¶¯µãTÂú×㣺
ET
=¦Ì(
EF1
+
EF2
)£¬¦Ì¡Ê(0£¬
1
2
)
£¬ÇÒ
ET
OT
µÄ×îСֵΪ-
5
4
£¬ÇóÅ×ÎïÏßPµÄ·½³Ì£»
£¨3£©µ±¦Ë¡Ê[2£¬4]ʱ£¬ÇóÍÖÔ²ÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÓÉÍÖÔ²C£º
x2
b2
+
y2
a2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨0£¬c£©¡¢F2£¨0£¬-c£©£¨c£¾0£©£¬Å×ÎïÏßP£ºx2=2py£¨p£¾0£©µÄ½¹µãÓëF1Öغϣ¬ÖªÅ×ÎïÏßP£ºx2=4cy£®Éè¹ýF2µÄÖ±ÏßlµÄ·½³ÌΪy+c=kx£¬ÁªÁ¢
y+c=ky
x2=4cy
£¬µÃx2-4kcx+4c2=0£¬ÀûÓÃΤ´ï¶¨ÀíÄÜÖ¤Ã÷ÇÐÏßlµÄбÂÊΪ¶¨Öµ£®
£¨2£©ÉèEO=t£¬ÓÉ
ET
=¦Ì(
EF1
+
EF2
)£¬¦Ì¡Ê(0£¬
1
2
)
£¬ÖªTÔÚÏ߶ÎEOÉÏÒƶ¯£¬¹Ê
EO
OT
=-|
EO
|•|
OT
|
|
EO
|+|
OT
|=t
£¬ÓÉ
ET
OT
µÄ×îСֵΪ-
5
4
£¬µÃµ½t=
5
£®ÓÉ´ËÄÜÇó³öÅ×ÎïÏßPµÄ·½³Ì£®
£¨3£©ÓÉÖ±ÏßlµÄ·½³ÌΪy=x-
5
£®ÁªÁ¢
y=x-
5
x2
a2-5
+
y2
a2
=1
£¬µÃ£¨2a2-5£©x2-2
5
£¨a2-5£©x-£¨a2-5£©2=0£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
2
5
(a2-5)
2a2-5
£¬x1x2=
-(a2-5)2
2a2-5
£®µ±¦Ë=2ʱ£¬x1=-2x2£®µ±¦Ë=4ʱ£¬x1=-4x2£®ÓÉ´ËÄÜÇó³öÍÖÔ²ÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§£®
½â´ð£º£¨1£©Ö¤Ã÷£º¡ßÍÖÔ²C£º
x2
b2
+
y2
a2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¨0£¬c£©¡¢F2£¨0£¬-c£©£¨c£¾0£©£¬
Å×ÎïÏßP£ºx2=2py£¨p£¾0£©µÄ½¹µãÓëF1Öغϣ¬
¡à
p
2
=c
£¬¡àÅ×ÎïÏßP£ºx2=4cy£®
Éè¹ýF2µÄÖ±ÏßlµÄ·½³ÌΪy+c=kx£¬
ÁªÁ¢
y+c=ky
x2=4cy
£¬µÃx2-4kcx+4c2=0£¬
¡ß¹ýF2µÄÖ±ÏßlÓëÅ×ÎïÏßPÏàÇУ¬ÇеãEÔÚµÚÒ»ÏóÏÞ£¬
¡à
¡÷=16k2c2-16c2=0
k£¾0
£¬
½âµÃk=1£®
¹ÊÇÐÏßlµÄбÂÊkΪ¶¨Öµ1£®
£¨2£©ÉèEO=t£¬¡ß
ET
=¦Ì(
EF1
+
EF2
)£¬¦Ì¡Ê(0£¬
1
2
)
£¬
¡àTÔÚÏ߶ÎEOÉÏÒƶ¯£¬
¡à
ET
OT
=-|
ET
|•|
OT
|
|
ET
|+|
OT
|=t
£¬
¡ß
ET
OT
µÄ×îСֵΪ-
5
4
£¬
¡àµ±|
ET
|=|
OT
|=
t
2
ʱ£¬
ET
OT
µÄ×îСֵ=-
t2
4
=-
5
4
£¬
¡àt=
5
£®
¡ß¹ýF2µÄÖ±ÏßlÓëÅ×ÎïÏßPÏàÇУ¬ÇеãEÔÚµÚÒ»ÏóÏÞ£¬
¡àÓÉ£¨1£©Öªk=1£¬Å×ÎïÏßÔÚEµã´¦µÄµ¼Êý£¬µÃE£¨p£¬
p
2
£©£¬
ÓÉt2=P2+£¨
p
2
£©2=5£¬½âµÃP=2£¬ËùÒÔÅ×ÎïÏß·½³ÌΪ£¬
¡àÅ×ÎïÏßPµÄ·½³ÌΪx2=4y£®
£¨3£©ÓÉ£¨2£©µÃc=
5
£¬
¡ßÖ±ÏßlµÄбÂÊk=1£¬¡àÖ±ÏßlµÄ·½³ÌΪy=x-
5
£®
ÁªÁ¢
y=x-
5
x2
a2-5
+
y2
a2
=1
£¬µÃ£¨2a2-5£©x2-2
5
£¨a2-5£©x-£¨a2-5£©2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
2
5
(a2-5)
2a2-5
£¬x1x2=
-(a2-5)2
2a2-5
£®
¡ßÖ±ÏßlÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÇÒ
F2B
=¦Ë
AF2
£¬¦Ë¡Ê[2£¬4]£¬
¡àµ±¦Ë=2ʱ£¬x1=-2x2£®
¡àx1+x2=
2
5
(a2-5)
2a2-5
=-x2£¬x1x2=
-(a2-5)2
2a2-5
=-2x22£®
¡à
-(a2-5)2
2a2-5
=-2•
20(a2-5)2
(2a2-5)2
£¬½âµÃa=
3
10
2
£¬e=
5
3
10
2
=
2
3
£®
µ±¦Ë=4ʱ£¬x1=-4x2£®
¡àx1+x2=
2
5
(a2-5)
2a2-5
=-3x2£¬x1x2=
-(a2-5)2
2a2-5
=-4x22£®
¡à
-(a2-5)2
2a2-5
=-4•
1
9
20(a2-5)2
(2a2-5)2
£¬½âµÃa=
5
10
6
£¬e=
5
5
10
6
=
3
2
5
£®
¡àÍÖÔ²ÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§ÊÇ[
2
3
£¬
3
2
5
]£®
µãÆÀ£º±¾Ì⿼²éÇÐÏßбÂÊΪ¶¨ÖµµÄÇ󷨣¬¿¼²éÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¿¼²éÍÖÔ²ÀëÐÄÂÊÈ¡Öµ·¶Î§µÄÇ󷨣®½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ½¹µãºÍÉ϶¥µã·Ö±ðΪF1¡¢F2¡¢B£¬ÎÒÃdzơ÷F1BF2ΪÍÖÔ²CµÄÌØÕ÷Èý½ÇÐΣ®Èç¹ûÁ½¸öÍÖÔ²µÄÌØÕ÷Èý½ÇÐÎÊÇÏàËƵģ¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÊÇ¡°ÏàËÆÍÖÔ²¡±£¬ÇÒÈý½ÇÐεÄÏàËƱȼ´ÎªÍÖÔ²µÄÏàËƱȣ®
£¨1£©ÒÑÖªÍÖÔ²C1£º
x2
4
+y2=1ºÍC2£º
x2
16
+
y2
4
=1£¬ÅжÏC2ÓëC1ÊÇ·ñÏàËÆ£¬Èç¹ûÏàËÆÔòÇó³öC2ÓëC1µÄÏàËƱȣ¬Èô²»ÏàËÆÇë˵Ã÷ÀíÓÉ£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=x+1£¬ÔÚÍÖÔ²CbÉÏÊÇ·ñ´æÔÚÁ½µãM¡¢N¹ØÓÚÖ±Ïßl¶Ô³Æ£¬Èô´æÔÚ£¬ÔòÇó³öº¯Êýf£¨b£©=|MN|µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1µÄÀëÐÄÂÊΪ
3
2
£¬¹ýÍÖÔ²CÉÏÒ»µãP£¨2£¬1£©×÷Çãб½Ç»¥²¹µÄÁ½ÌõÖ±Ïߣ¬·Ö±ðÓëÍÖÔ²½»ÓÚµãA¡¢B£¬Ö±ÏßABÓëxÖá½»ÓÚµãM£¬ÓëyÖḺ°ëÖá½»ÓÚµãN£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£º
£¨¢ò£©ÈôS¡÷PMN=
3
2
£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
36
+
y2
20
=1µÄ×󶥵㣬ÓÒ½¹µã·Ö±ðΪA£¬F£¬ÓÒ×¼ÏßΪl£¬NΪlÉÏÒ»µã£¬ÇÒÔÚxÖáÉÏ·½£¬ANÓëÍÖÔ²½»ÓÚµãM£®
£¨1£©ÈôAM=MN£¬ÇóÖ¤£ºAM¡ÍMF£»
£¨2£©¹ýA£¬F£¬NÈýµãµÄÔ²ÓëyÖá½»ÓÚP£¬QÁ½µã£¬ÇóPQµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһģ£©Èçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
3
2
£¬ÒÔÍÖÔ²CµÄ×󶥵ãTΪԲÐÄ×÷Ô²T£º£¨x+2£©2+y2=r2£¨r£¾0£©£¬ÉèÔ²TÓëÍÖÔ²C½»ÓÚµãMÓëµãN£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Çó
TM
TN
µÄ×îСֵ£¬²¢Çó´ËʱԲTµÄ·½³Ì£»
£¨3£©ÉèµãPÊÇÍÖÔ²CÉÏÒìÓÚM£¬NµÄÈÎÒâÒ»µã£¬ÇÒÖ±ÏßMP£¬NP·Ö±ðÓëxÖá½»ÓÚµãR£¬S£¬OΪ×ø±êÔ­µã£¬ÇóÖ¤£º|OR|•|OS|Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×󶥵㣬ÓÒ½¹µã·Ö±ðΪA¡¢F£¬ÓÒ×¼ÏßΪm£®Ô²D£ºx2+y2+x-3y-2=0£®
£¨1£©ÈôÔ²D¹ýA¡¢FÁ½µã£¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßmÉϲ»´æÔÚµãQ£¬Ê¹¡÷AFQΪµÈÑüÈý½ÇÐΣ¬ÇóÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§£®
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÈôÖ±ÏßmÓëxÖáµÄ½»µãΪK£¬½«Ö±ÏßlÈÆK˳ʱÕëÐýת
¦Ð
4
µÃÖ±Ïßl£¬¶¯µãPÔÚÖ±ÏßlÉÏ£¬¹ýP×÷Ô²DµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪM¡¢N£¬ÇóÏÒ³¤MNµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸