精英家教网 > 高中数学 > 题目详情

如图是某直三棱柱(侧棱与底面垂直的三棱柱)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,的中点,的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求证:
(Ⅱ)求三棱锥的体积。

(Ⅰ)证明:


所以
是平行四边形,所以
因此。                     4分
(Ⅱ)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在长方体中,,点在棱上移动.

⑴ 证明://平面
⑵证明:
⑶ 当的中点时,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图1,在三棱锥P-A.BC中,PA.⊥平面A.BC,A.C⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.

(1) 证明:A.D⊥平面PBC;
(2) 求三棱锥D-A.BC的体积;
(3) 在∠A.CB的平分线上确定一点Q,使得PQ∥平面A.BD,并求此时PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图,分别是正四棱柱上、下底面的中
心,的中点,.
(Ⅰ)求证:∥平面
(Ⅱ当取何值时,在平面内的射影恰好为的重心?
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图(1),△是等腰直角三角形,分别为的中点,将△沿折起,使在平面上的射影恰好为的中点,得到图(2)。


(Ⅰ)求证:;(Ⅱ)求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个几何体的三视图如图所示。
(1)求此几何体的表面积;
(2)如果点在正视图中所示位置:为所在线段中点,为顶点,求在几何体表面上,从点到点的最短路径的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)

 

 
一几何体的三视图如图:

 

 
(1)画出它的直观图;

(2)求该几何体的体积.
          

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,
E、F分别为棱BC、AD的中点.

(Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值.
(Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如图所示,其中MN分别是ABAC的中点,GDF上的一动点.
(1)求证:
(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.

查看答案和解析>>

同步练习册答案