(本小题满分12分)如图(1),△是等腰直角三角形,分别为的中点,将△沿折起,使在平面上的射影恰好为的中点,得到图(2)。
(Ⅰ)求证:;(Ⅱ)求三棱锥的体积。
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形.
(1)求证:CD∥平面EFGH;
(2)如果AB=CD=a求证:四边形EFGH的周长为定值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图是某直三棱柱(侧棱与底面垂直的三棱柱)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,是的中点,是的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com