已知函数,,其中为常数, ,函数的图象与坐标轴交点处的切线为,函数的图象与直线交点处的切线为,且。
(Ⅰ)若对任意的,不等式成立,求实数的取值范围.
(Ⅱ)对于函数和公共定义域内的任意实数。我们把 的值称为两函数在处的偏差。求证:函数和在其公共定义域的所有偏差都大于2.
(Ⅰ);(Ⅱ)详见解析.
解析试题分析:(Ⅰ)利用参数分离法将不等式问题转化为,等价转化为处理,于是问题的核心就是求函数,利用导数求解,但同时需要注意题中的隐含条件将的值确定下来;(Ⅱ)先确定函数与函数的解析式,然后引入函数,通过证明,进而得到
,得到,于是就说明原结论成立.
试题解析:解(Ⅰ)函数的图象与坐标轴的交点为,
又
函数的图象与直线的交点为,
又
由题意可知,
又,所以 3分
不等式可化为
即
令,则,
又时,,,
故,在上是减函数
即在上是减函数
因此,在对任意的,不等式成立,
只需
所以实数的取值范围是 8分
(Ⅱ)证明:和的公共定义域为,由(Ⅰ)可知,
令,则,
在上是增函数
故,即 ①
令,则,
当时,;当时,,
有最大值,因此 ②
由①②得,即
又由①得
由②得
故函数和在其公共定义域的所有偏差都大于2  
科目:高中数学 来源: 题型:解答题
已知函数,其中是自然对数的底数,.
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率.设某商品标价为元,购买该商品得到的实际折扣率为.
(Ⅰ)写出当时,关于的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其图象为曲线,点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当点时,的方程为,求实数和的值;
(Ⅲ)设切线、的斜率分别为、,试问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.
(I)指出函数f(x)的单调区间;
(II)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;
(III)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不低于时,才能对污染产生有效的抑制作用.
(Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com