精英家教网 > 高中数学 > 题目详情

已知函数),
(1)求函数的单调区间,并确定其零点个数;
(2)若在其定义域内单调递增,求的取值范围;
(3)证明不等式 ).

(1)当时,的减区间,的增区间,有且只有一个零点;当时,的增区间,的减区间,有且只有一个零点.
(2)
(3)由(2)可知 当时,内单调递增,
所以当时, 即   放缩法来得到。

解析试题分析:解:(1)                 1分

                 2分
(i)若,则当时,;当时,
所以 的增区间,的减区间.        3分
极大值为
所以只有一个零点.
(ii)若,则当时,;当时,
所以 的减区间,的增区间.
极小值为              4分
所以只有一个零点.
综上所述,
时,的减区间,的增区间,有且只有一个零点;
时,的增区间,的减区间,有且只有一个零点.
5分
(2)
              6分
在其定义域内单调递增,可知,恒成立.
  恒成立.          7分
(法一)由二次函数的图象(开口向上,过定点)可得 
8分


.
可以验证 当在其定义域内单调递增
.                         9分
(法二)分离变量
 (当且仅当,即时取到等号) 8分
所以 , 则.
可以验证 当

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知幂函数为偶函数,且在区间上是单调增函数.
⑴求函数的解析式;
⑵设函数,若的两个实根分别在区间内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数, ,函数的图象与坐标轴交点处的切线为,函数的图象与直线交点处的切线为,且
(Ⅰ)若对任意的,不等式成立,求实数的取值范围.
(Ⅱ)对于函数公共定义域内的任意实数。我们把 的值称为两函数在处的偏差。求证:函数在其公共定义域的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=-1时,求的最大值;
(2)若f(x)在区间(0,e]上的最大值为-3,求a的值;
(3)当a=-1时,试推断方程是否有实数解 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的偶函数,且时,
(Ⅰ)求
(Ⅱ)求函数的表达式;
(Ⅲ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的导函数的图像与直线平行,且处取得极小值.设
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求证:函数上的奇函数;
(2)若函数在区间上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD的长为x米 .

(1)用x表示墙AB的长;
(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y(元)表示为x(米)的函数;
(3)当x为何值时,墙壁的总造价最低?

查看答案和解析>>

同步练习册答案