精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-x
ax
+lnx

(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(Ⅱ)当a=1时,求f(x)在[
1
2
,2]
上的最大值和最小值.
分析:(Ⅰ)先求出函数的导函数,把函数f(x)在[1,+∞)上为增函数转化为导函数大于等于0恒成立问题,再转化为关于正实数a的不等式问题即可求出正实数a的取值范围;
(Ⅱ)先求出函数的导函数以及导数为0的根,进而求出其在[
1
2
,2]
上的单调性即可求f(x)在[
1
2
,2]
上的最大值和最小值.
解答:解:(Ⅰ)∵f(x)=
1-x
ax
+lnx,
∴f'(x)=
ax-1
ax2
   (a>0)
∵函数f(x)在[1,+∞)上为增函数
∴f'(x)=
ax-1
ax2
≥0对 x∈[1,+∞)恒成立 
∴ax-1≥0 在x∈[1,+∞)上恒成立 
∴a≥
1
x
,对x∈[1,+∞)恒成立 
∴a≥1.
(Ⅱ)当a=1时,f'(x)=
x-1
x2

当x∈[
1
2
,1)时,f'(x)<0,故f(x)在x∈[
1
2
,1)上单调递减;
当x∈[1,2]时,f'(x)>0,f(x)在x∈[1,2]上单调递增.
∴f(x)在x∈[
1
2
,2]上有唯一极小值点,
故f(x)min=f(x)极小值=f(1)=0
∵f(
1
2
)=1-ln2,f(2)=-
1
2
+ln2,f(
1
2
)-f(2)=
3
2
-2ln2=
lne3-ln16
2

∵e3>16,∴f(
1
2
)-f(2)>0?f(
1
2
)>f(2).(10分)
∴f(x)在区间[
1
2
,2]上的最大值f(x)=f(
1
2
)=1-ln2.
综上可知,函数f(x)在[
1
2
,2]
上的最大值是1-ln2,最小值是0.
点评:本题第二问考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b) 比较而得到的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案