精英家教网 > 高中数学 > 题目详情
7.已知A,B,C三点不在同一条直线上,O是平面ABC内一定点,P是△ABC内的一动点,若$\overrightarrow{OP}-\overrightarrow{OA}=λ(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC})$,λ∈[0,+∞),则直线AP一定过△ABC的(  )
A.重心B.垂心C.外心D.内心

分析 通过画出草图,数形结合即得结论.

解答 解:如图,取BC的中点P并连结AD,
则$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BC}$=$\overrightarrow{AD}$、$\overrightarrow{OP}$-$\overrightarrow{OA}$=$\overrightarrow{AP}$,
∵$\overrightarrow{OP}-\overrightarrow{OA}=λ(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC})$,λ∈[0,+∞),
∴$\overrightarrow{AP}$=λ$\overrightarrow{AD}$,即A、P、D三点共线,
又∵AD为BC边上的中线,
∴直线AP一定过△ABC的重心,
故选:A.

点评 本题考查平面向量的线性运算性质及其几何意义,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知直线Ax+y+C=0,其中A,C,4成等比数列,且直线经过抛物线y2=8x的焦点,则A+C=(  )
A.-1B.0C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,a=3,b=5,c=7,那么这个三角形的最大角是(  )
A.135°B.150°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是(  )
①P(B)=$\frac{2}{5}$;  ②$P(B\left|{A_1}\right.)=\frac{5}{11}$;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件.
A.②④B.①③C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点 M(-1,3),点 N(3,2),点 P在直线y=x+1上,则当PM+PN取得最小值时,点P的坐标为($\frac{7}{5}$,$\frac{12}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C的一个顶点为A(0,-1),焦点在x轴上,右焦点到直线x-y+2$\sqrt{2}$=0的距离为3
(1)求椭圆C的方程;
(2)设椭圆C与直线y=x+1相交于不同的两点M,N,求$\overrightarrow{AM}$•$\overrightarrow{AN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆x2+y2=1在伸缩变换$\left\{\begin{array}{l}x'=2x\\ y'=3y\end{array}\right.$的作用下,所得方程是(  )
A.4x′2+9y′2=1B.$\frac{{{{x'}^2}}}{2}+\frac{{{{y'}^2}}}{3}=1$C.$\frac{{{{x'}^2}}}{9}+\frac{{{{y'}^2}}}{4}=1$D.$\frac{{{{x'}^2}}}{4}+\frac{{{{y'}^2}}}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、a,且$a-b=\sqrt{2}-1$,$sinA=\frac{{\sqrt{5}}}{5}$,$sinB=\frac{{\sqrt{10}}}{10}$.
(1)求a,b的值;
(2)求角C和边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{OA}$=(2,2),$\overrightarrow{OB}$=(4,1),在x轴上有一点P,使$\overrightarrow{AP}$•$\overrightarrow{BP}$有最小值,则P点坐标为(  )
A.(-3,0)B.(3,0)C.(2,0)D.(4,0)

查看答案和解析>>

同步练习册答案