精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x3+ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有相同的切线.
( I)求实数a,b,c的值;
( II)设函数F(x)=f(x)+g(x),求函数F(x)的单调区间.
分析:(I)欲求实数a,b,c的值,只须求出切线斜率的值,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后利用斜率相等及都过点P列出等量关系,从而问题解决.
(II)欲求函数F(x)=f(x)+g(x),求函数F(x)的单调区间,利用导数来解决.先求出F(x)的导数,根据F′(x)>0求得的区间是单调增区间,F′(x)<0求得的区间是单调减区间即可.
解答:解:( I)由题设知:
f(2)=0
g(2)=0
f(2)=g(2)
?
16+2a=0
4b+c=0
24+a=4b
?
a=-8
b=4
c=-16

实数a,b,c的值分别为:-8,4,-16.
( II)F(x)=2x3+4x2-8x-16F′(x)=6x2+8x-8
令F′(x)=6x2+8x-8>0得x>
2
3
或x<-2
令F′(x)=6x2+8x-8<0得-2<x<
2
3

所以F(x)递增区间为(-∞,-2),(
2
3
,+∞)

递减区间为(-2,
2
3
)
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程、利用导数求闭区间上函数的单调性等基础知识,考查运算求解能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案