精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台中, 分别是 的中点, 平面, 是等边三角形, , ,.

(1)证明: 平面

(2)求二面角的正弦值.

【答案】(1)见解析;(2) .

【解析】试题分析:(1)根据棱台的性质和三角形的中位线可以得到,从而得到平面.在梯形中, 为棱的中点),所以平面,从而可以证明平面平面,也就能得到平面.(2)以所在直线分别为轴, 轴, 轴,建立空间直角坐标系,通过计算平面和平面的法向量的夹角得到二面角的正弦值为.

解析:(1)证明:因为, 为棱的中点,所以,所以四边形为平行四边形,从而.又平面,平面,所以平面. 因为的中位线,所以,同理可证, 平面.因为,所以平面平面. 平面,所以平面.

(2)以所在直线分别为轴, 轴, 轴,建立如图所示的空间直角坐标系,设,则,则.

设平面的一个法向量,则

,得.

同理,设平面的一个法向量,又,

,得,得.所以,即二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,为抑制房价过快上涨,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试建立关于的回归方程(系数精确到0.01);政府若不调控,依此相关关系预测第12月份该市新建住宅销售均价;

(2)地产数据研究院在2016年的12个月份中,随机抽取三个月的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为,求的分布列和数学期望.

参考数据:

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1若关于的方程上恒成立,求的值;

2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(Ⅰ)当时,求的极值;

(Ⅱ)若有2个不同零点,求的取值范围;

(Ⅲ)对,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(14分)在四棱锥PABCD中,ABCACD=90°BACCAD=60°PA平面ABCDEPD的中点,PA=2AB=2.

)求四棱锥PABCD的体积V

)若FPC的中点,求证PC平面AEF

)求证CE平面PAB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中, 分别是 的中点, 平面, 是等边三角形, , ,.

(1)证明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, ,点上的动点.现将矩形沿着对角线折成二面角,使得

)求证:当时,

)试求的长,使得二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

同步练习册答案