精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=loga(x+1),g(x)=2loga(2x+m),(m∈R),其中x∈[0,15],a>0且a≠1.
(1)若1是关于方程f(x)-g(x)=0的一个解,求m的值.
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求m的取值范围.

分析 (1)由题意:1是关于方程f(x)-g(x)=0的一个解,直接带入计算求出m的值即可.
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,等价于$\sqrt{x+1}≤2x+m,x∈[{0,15}]$恒成立,从而解出m的取值范围.

解答 解:由题意:1是关于方程f(x)-g(x)=0的一个解,可得:loga2=2loga(2+m),解得$m=-2+\sqrt{2}$或$m=-2-\sqrt{2}$
∵2+m>0
∴$m=-2-\sqrt{2}$不符合题意.
所以m的值为$\sqrt{2}-2$.
(2)f(x)≥g(x)恒成立,等价于$\sqrt{x+1}≤2x+m,x∈[{0,15}]$恒成立.
即:$m≥\sqrt{x+1}-2x$,x∈[0,15]恒成立.
令$u=\sqrt{x+1},u∈[{1,4}]$,
则$\sqrt{x+1}-2x=-2{({u-\frac{1}{4}})^2}+\frac{17}{8},u∈[{1,4}]$
当u=1时,$\sqrt{x+1}-2x$的最大值为1.
所以:m≥1即可恒成立.
故m的取值范围是[1,+∞).

点评 本题考查了对数的基本计算和恒成立问题.恒成立问题:常见的方法了最值法,分离参数法,判别式法,根据不同题型采用不同的方法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在平面上$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=1,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,|$\overrightarrow{OP}$|<$\frac{2}{3}$,则$|{\overrightarrow{OA}}|$的取值范围是(  )
A.$(0,\frac{{\sqrt{14}}}{3}]$B.$(\frac{{\sqrt{14}}}{3},\sqrt{2}]$C.$(\frac{{\sqrt{5}}}{2},\sqrt{5}]$D.$(\frac{{\sqrt{7}}}{2},\sqrt{7}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夹角为90°的两个单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\sqrt{3}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-2$\overrightarrow{{e}_{1}}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.椭圆C:$\frac{x^2}{2}+{y^2}$=1,已知A(1,0),B(2,0),若过B的直线与椭圆交于P,Q两点.
(1)求证:∠QAB+∠PAB=180°;
(2)求△APQ面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆截y轴所得弦长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题“对任意x∈R,都有x2≥0”的否定为存在x0∈R,使得x${\;}_{0}^{2}$<0.存在x0∈R,使得x${\;}_{0}^{2}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)已知$f(x)=\frac{{{x^2}-1}}{x+lnx}$,求f′(x);
(Ⅱ)已知曲线y=e-2x+1,求曲线在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$y=lg\sqrt{x+1}$的定义域是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设a,b∈R,函数f(x)=ex-alnx-a,其中e是自然对数的底数,曲线y=f(x)在点(1,f(1))处的切线方程为(e-1)x-y+b=0.
(1)求实数a,b的值;
(2)求证:函数y=f(x)存在极小值;
(3)若?x∈[$\frac{1}{2}$,+∞),使得不等式$\frac{e^x}{x}$-lnx-$\frac{m}{x}$≤0成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案