精英家教网 > 高中数学 > 题目详情
已知常数 θ∈( 0,),则( tan θ )> ( cot θ ) x 8不等式的解集是                
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
=(sin2
π+2x
4
,cosx+sinx)
b
=(4sin x,cos x-sin x),f(x)=
a
b

(1)求函数f(x)的解析式;
(2)已知常数ω>0,若y=f(ωx)在区间[-
π
2
3
]
是增函数,求ω的取值范围;
(3)设集合A={x|
π
6
≤x≤
3
}
,B={x||f(x)-m|<2},若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

10、如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个;
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个;
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
上述命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(sin2
π+2x
4
,cosx+sinx),
b
=(4sinx,cosx-sinx),f(x)=
a
b

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)已知常数ω>0,若y=f(ωx)在区间[-
π
2
3
]
上是增函数,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数a≠0,数列{an}前n项和为Sn,且Sn=an2-(a-1)n
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)若an≤2n3-13n2+11n+1对任意的正整数n恒成立,求实数a的取值范围;
(Ⅲ)若a=
1
2
,数列{cn}满足:cn=
an
an+2012
,对于任意给定的正整数k,是否存在p,q∈N*,使得ck=cp•cq?若存在,求出p,q的值(只要写出一组即可);若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4sin2
π+2x
4
 • sinx+(cosx+sinx)(cosx-sinx)

(1)化简f(x);
(2)已知常数ω>0,若函数y=f(ωx)在区间[-
π
2
,  
3
]
上是增函数,求ω的取值范围;
(3)若方程f(x)(sinx-1)+a=0有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案