精英家教网 > 高中数学 > 题目详情
在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的,且样本容量160,则中间一组的频数为
A.32B.0.2C.40D.0.25
A

试题分析:设中间一组的频率为x,由频率分布直方图的性质及条件可知:,∴,∴中间一组的频数为,故选A
点评:频率分布直方图中所有面积之和为1是解决此类问题的关键,属基础题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

某校为了解高三同学寒假期间学习情况,抽查了100名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图),则这100名同学中学习时间在6~8小时内的人数为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正定中学教学处采用系统抽样方法,从学校高三年级全体800名学生中抽50名学生做学习状况问卷调查。现将800名学生从1到800进行编号,在中随机抽取一个数,如果抽到的是7,则从中应取的数是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下有关线性回归分析的说法不正确的是(    )
A.通过最小二乘法得到的线性回归直线经过样本的中心
B.用最小二乘法求回归直线方程,是寻求使最小的a,b的值
C.相关系数r越小,表明两个变量相关性越弱
D.越接近1,表明回归的效果越好

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某班共有学生40人,将一次数学考试成绩(单位:分)绘制成频率分布直方图,如图所示。

(1)请根据图中所给数据,求出的值;
(2)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;
(3)为了了解学生本次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[ 60,70)内的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题.

(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)根据频率分布直方图,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在对某样本进行实验时,测得如下数据:则之间的回归直线方程为(  )

2
1
4
3

3
2
5
4
A、   B、   C、   D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸






甲机床零件频数
2
3
20
20
4
1
乙机床零件频数
3
5
17
13
8
4
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:

0.25
0.15
0.10
0.05
0.025
0.010

1.323
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一组统计数据共10个,它们是:,已知这组数据的平均数为6,则这组数据的方差为        

查看答案和解析>>

同步练习册答案