【题目】设函数f(x)= ﹣alnx.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数f(x)在区间(1,e2]内恰有两个零点,试求a的取值范围.
【答案】解:(Ⅰ)当a=1时,
f(x)= ﹣lnx,f'(x)=x﹣ ,
∵f'(1)=0,f(1)= ,
∴在点(1,f(1))处的切线方程y= ;
(Ⅱ)f'(x)= ,
当a≤0时,f'(x)>0,f(x)递增,函数无极值;
当a>0时,在(0, )时递减,在( ,+∞)时递增,函数的极小值为f( )=0;
(Ⅲ)f(x)= ﹣alnx在区间(1,e2]内恰有两个零点,
∴y= 与y= 在区间(1,e2]内恰有两个交点,
令g(x)= ,g'(x)= ,
g(x)在(0,e)递增,在(e,e2)上递减,
∴g(e)= ,g(e2)= ,
∴ ∈[ , ),
∴a∈( , ].
【解析】(1)当a=1时,对f(x)求导,根据导函数求出在(1,f(1))的切线斜率,在由点斜式可得到切线方程,(2)对a进行分类讨论,得出f(x)的单调区间和极值,(3)f(x)= ﹣alnx在区间(1,e2]内恰有两个零点,可转化为y= 与y= 在区间(1,e2]内恰有两个交点,求导可得出的范围,从而得到a的范围.
科目:高中数学 来源: 题型:
【题目】已知定义在区间[﹣3,3]上的单调函数f(x)满足:对任意的x∈[﹣3,3],都有f(f(x)﹣2x)=6,则在[﹣3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是( )
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V= )
A.2寸
B.3寸
C.4寸
D.5寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学人力资源部计划2016年招聘2名数学教师,共5名应聘者进入最后课堂实录环节.5名数学组评审专家给出评分如表:
评审专家/应聘老师 | 1 | 2 | 3 | 4 | 5 |
评审专家A | 93.0 | 90.0 | 88.5 | 89.5 | 82.5 |
评审专家B | 94.0 | 83.0 | 89.0 | 93.0 | 81.0 |
评审专家C | 91.0 | 85.0 | 81.5 | 88.0 | 81.0 |
评审专家D | 92.0 | 91.5 | 81.0 | 94.5 | 87.0 |
评审专家E | 95.5 | 91.0 | 90.0 | 95.5 | 88.5 |
(Ⅰ)若依据去掉一个最高分和一个最低分规则计算应聘老师成绩,试确定最终应聘成功的2名数学老师的序号;
(Ⅱ)在课堂实录环节,每名应聘老师都需要从5名评审专家中随机选取2名进行点评,且每名应聘老师的选择互不影响,设X表示评审专家A进行点评的次数,求X的分布列以及数学期望;
(Ⅲ)记评审专家A与评审专家B给出的评分的方差分别为 ,试比较 与 的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3,若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是( )
A.(1,+∞)
B.(2+ ,+∞)
C.(2﹣ ,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,等腰梯形ABCD的底角 A等于60°,直角梯形 ADEF所在的平面垂直于平面ABCD,∠EDA=90°,且ED=AD=2AB=2AF.
(1)证明:平面ABE⊥平面EBD;
(2)若三棱锥 A﹣BDE的外接球的体积为 ,求三棱锥 A﹣BEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1 , a2 , a5成等比数列.
(Ⅰ)证明S1 , S3 , S9成等比数列;
(Ⅱ)设a1=1,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为矩形的四棱椎P﹣ABCD中,PB⊥AB.
(1)证明:平面PBC⊥平面PCD;
(2)若异面直线PC与BD所成角为60°,PB=AB,PB⊥BC,求二面角B﹣PD﹣C的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com