精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ﹣alnx.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数f(x)在区间(1,e2]内恰有两个零点,试求a的取值范围.

【答案】解:(Ⅰ)当a=1时,

f(x)= ﹣lnx,f'(x)=x﹣

∵f'(1)=0,f(1)=

∴在点(1,f(1))处的切线方程y=

(Ⅱ)f'(x)=

当a≤0时,f'(x)>0,f(x)递增,函数无极值;

当a>0时,在(0, )时递减,在( ,+∞)时递增,函数的极小值为f( )=0;

(Ⅲ)f(x)= ﹣alnx在区间(1,e2]内恰有两个零点,

∴y= 与y= 在区间(1,e2]内恰有两个交点,

令g(x)= ,g'(x)=

g(x)在(0,e)递增,在(e,e2)上递减,

∴g(e)= ,g(e2)=

∈[ ),

∴a∈( ].


【解析】(1)当a=1时,对f(x)求导,根据导函数求出在(1,f(1))的切线斜率,在由点斜式可得到切线方程,(2)对a进行分类讨论,得出f(x)的单调区间和极值,(3)f(x)= ﹣alnx在区间(1,e2]内恰有两个零点,可转化为y= 与y= 在区间(1,e2]内恰有两个交点,求导可得出的范围,从而得到a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在区间[﹣3,3]上的单调函数f(x)满足:对任意的x∈[﹣3,3],都有f(f(x)﹣2x)=6,则在[﹣3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(  )
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V=
A.2寸
B.3寸
C.4寸
D.5寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学人力资源部计划2016年招聘2名数学教师,共5名应聘者进入最后课堂实录环节.5名数学组评审专家给出评分如表:

评审专家/应聘老师

1

2

3

4

5

评审专家A

93.0

90.0

88.5

89.5

82.5

评审专家B

94.0

83.0

89.0

93.0

81.0

评审专家C

91.0

85.0

81.5

88.0

81.0

评审专家D

92.0

91.5

81.0

94.5

87.0

评审专家E

95.5

91.0

90.0

95.5

88.5

(Ⅰ)若依据去掉一个最高分和一个最低分规则计算应聘老师成绩,试确定最终应聘成功的2名数学老师的序号;
(Ⅱ)在课堂实录环节,每名应聘老师都需要从5名评审专家中随机选取2名进行点评,且每名应聘老师的选择互不影响,设X表示评审专家A进行点评的次数,求X的分布列以及数学期望;
(Ⅲ)记评审专家A与评审专家B给出的评分的方差分别为 ,试比较 的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在(0,+∞)上的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3,若方程f(x)+f′(x)=a有两个不同的实数根,则实数a的取值范围是(  )
A.(1,+∞)
B.(2+ ,+∞)
C.(2﹣ ,+∞)
D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足3a8=5a15 , 且 ,Sn为其前n项和,则数列{Sn}的最大项为(  )
A.
B.S24
C.S25
D.S26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰梯形ABCD的底角 A等于60°,直角梯形 ADEF所在的平面垂直于平面ABCD,∠EDA=90°,且ED=AD=2AB=2AF.

(1)证明:平面ABE⊥平面EBD;
(2)若三棱锥 A﹣BDE的外接球的体积为 ,求三棱锥 A﹣BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1 , a2 , a5成等比数列.
(Ⅰ)证明S1 , S3 , S9成等比数列;
(Ⅱ)设a1=1,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱椎P﹣ABCD中,PB⊥AB.

(1)证明:平面PBC⊥平面PCD;
(2)若异面直线PC与BD所成角为60°,PB=AB,PB⊥BC,求二面角B﹣PD﹣C的大小.

查看答案和解析>>

同步练习册答案