精英家教网 > 高中数学 > 题目详情
有一块边长为36的正三角形铁皮,从它的三个角剪下三个全等的四边形后做成一个无盖的正三棱柱容器,如左下图示,则这个容器的最大容积是(   )
A.288B.292C.864D.876
C

试题分析:根据题意,由于铁皮是边长为36的正三角形铁皮,那么从三个角剪下三个全等的四边形后做成一个无盖的正三棱柱容器,可知箱高为 ,箱子的容积为
,然后求解导数可知
故可知函数在x=24A时取得最大值为864,故选C
点评:本题考查的知识点是棱柱的体积,导数法求最值,其中根据已知求出容积V(x)的解析式,是解答的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数,则
_         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数在点处的切线方程为
(1)求函数的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

小明和同桌小聪一起合作探索:如图,一架5米长的梯子AB斜靠在铅直的墙壁AC上,这时梯子的底端B到墙角C的距离为1.4米.如果梯子的顶端A沿墙壁下滑0.8米,那么底端B将向左移动多少米?

(1)小明的思路如下,请你将小明的解答补充完整:
解:设点B将向左移动x米,即BE=x,则:
EC= x+1.4,DC=ACDC=-0.8=4,
DE=5,在Rt△DEC中,由EC2+DC2=DE2
得方程为:     , 解方程得:    
∴点B将向左移动    米.
(2)解题回顾时,小聪提出了如下两个问题:
①将原题中的“下滑0.8米”改为“下滑1.8米”,那么答案会是1.8米吗?为什么?
②梯子顶端下滑的距离与梯子底端向左移动的距离能相等吗?为什么?
请你解答小聪提出的这两个问题.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


已知函数,且任意的

(1)求的值;
(2)试猜想的解析式,并用数学归纳法给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (a>0,且a≠1),=.
(1)函数的图象恒过定点A,求A点坐标;
(2)若函数的图像过点(2,),证明:函数(1,2)上有唯一的零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知上的奇函数,且满足,当时,,则(   )   
A.-2B.2C.4D.-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是函数的两个零点,函数的最小值为,记
(ⅰ)试探求之间的等量关系(不含);
(ⅱ)当且仅当在什么范围内,函数存在最小值?
(ⅲ)若,试确定的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在上的函数是减函数,且是奇函数,若,求实数的范围。

查看答案和解析>>

同步练习册答案